1887

Abstract

Homologues of the protein constituents of the () type II secreton (T2S), the type IV pilus/fimbrium biogenesis machinery (T4P) and the flagellum biogenesis machinery (Fla) have been identified. Known constituents of these systems include (1) a major prepilin (preflagellin), (2) several minor prepilins (preflagellins), (3) a prepilin (preflagellin) peptidase/methylase, (4) an ATPase, (5) a multispanning transmembrane (TM) protein, (6) an outer-membrane secretin (lacking in Fla) and (7) several functionally uncharacterized envelope proteins. Sequence and phylogenetic analyses led to the conclusion that, although many of the protein constituents are probably homologous, extensive sequence divergence during evolution clouds this homology so that a common ancestry can be established for all three types of systems for only two constituents, the ATPase and the TM protein. Sequence divergence of the individual T2S constituents has occurred at characteristic rates, apparently without shuffling of constituents between systems. The same is probably also true for the T4P and Fla systems. The family of ATPases is much larger than the family of TM proteins, and many ATPase homologues function in capacities unrelated to those considered here. Many phylogenetic clusters of the ATPases probably exhibit uniform function. Some of these have a corresponding TM protein homologue although others probably function without one. It is further shown that proteins that compose the different phylogenetic clusters in both the ATPase and the TM protein families exhibit unique structural characteristics that are of probable functional significance. The TM proteins are shown to have arisen by at least two dissimilar intragenic duplication events, one in the bacterial kingdom and one in the archaeal kingdom. The archaeal TM proteins are twice as large as the bacterial TM proteins, suggesting an oligomeric structure for the latter.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26364-0
2003-11-01
2020-02-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493051.html?itemId=/content/journal/micro/10.1099/mic.0.26364-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Ast V., Schoenhofen I., Langen G., Stratilo C., Chamberlain M., Howard S.. 2002; Expression of the ExeAB complex of Aeromonas hydrophila is required for the localization and assembly of the ExeD secretion port multimer. Mol Microbiol44:217–231
    [Google Scholar]
  3. Ball G., Durand E., Lazdunski A., Filloux A.. 2002; A novel type II secretion system in Pseudomonas aeruginosa. Mol Microbiol43:475–485
    [Google Scholar]
  4. Bardy S., Jarrell K.. 2002; FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. FEMS Microbiol Lett208:53–59
    [Google Scholar]
  5. Bitter W., Koster M., Latijnhouwers M., de Cock H., Tommassen J.. 1998; Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa. Mol Microbiol27:209–219
    [Google Scholar]
  6. Blank T., Donnenberg M.. 2001; Novel topology of BfpE, a cytoplasmic membrane protein required for type IV fimbrial biogenesis in enteropathogenic Escherichia coli. J Bacteriol183:4435–4450
    [Google Scholar]
  7. Bleves S., Lazdunski A., Tommassen J., Filloux A.. 1998; The secretion apparatus of Pseudomonas aeruginosa: identification of a fifth pseudopilin, XcpX. Mol Microbiol27:31–40
    [Google Scholar]
  8. Bleves S., Gérard-Vincent M., Lazdunski A., Filloux A.. 1999; Structure-function analysis of XcpP, a component involved in general secretory pathway-dependent protein secretion in Pseudomonas aeruginosa. J Bacteriol181:4012–4019
    [Google Scholar]
  9. Brok R., Van Gelder P., Winterhalter M., Ziese U., Koster A. J., de Cock H., Koster M., Tommassen J., Bitter W.. 1999; The C-terminal domain of the Pseudomonas secretin XcpQ forms oligomeric rings with pore activity. J Mol Biol294:1169–1179
    [Google Scholar]
  10. Cao T. B., Saier M. H. Jr. 2001; Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. Microbiology147:3201–3214
    [Google Scholar]
  11. Cao T. B., Saier M. H. Jr. 2003; The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. Biochim Biophys Acta 1609;115–125
    [Google Scholar]
  12. Collins R. F., Davidsen L., Derrick J. P., Ford R. C., Tønjum T.. 2001; Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J Bacteriol183:3825–3832
    [Google Scholar]
  13. Collins R. F., Ford R. C., Kitmitto A., Olsen R. O., Tonjum T., Derrick J. P.. 2003; Three-dimensional structure of the Neisseria meningitidis secretin PilQ determined from negative-strain transmission electron microscopy. J Bacteriol185:2611–2617
    [Google Scholar]
  14. Condemine G., Shevchik V.. 2000; Overproduction of the secretin OutD suppresses the secretion defect of an Erwinia chrysanthemi outB mutant. Microbiology146:639–647
    [Google Scholar]
  15. Cuff J. A., Clamp M. E., Siddiqui A. S., Finlay M., Barton G. J.. 1998; Jpred: a consensus secondary structure prediction server. Bioinformatics14:892–893
    [Google Scholar]
  16. d'Enfert C., Reyss I., Wandersman C., Pugsley A. P.. 1989; Protein secretion by gram-negative bacteria. Characterization of two membrane proteins required for pullulanase secretion by Escherichia coli K12. J Biol Chem264:17462–17468
    [Google Scholar]
  17. Devereux J., Haeberli P., Smithies N. O.. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res12:387–395
    [Google Scholar]
  18. Drake S. L., Sandstedt S. A., Koomey M.. 1997; PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass multimer. Mol Microbiol23:657–668
    [Google Scholar]
  19. Feng D.-F., Doolittle R. F.. 1990; Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol183:375–387
    [Google Scholar]
  20. Filloux A., Michel G., Bally M.. 1998; GSP-dependent protein secretion in Gram-negative bacteria: the Xcp system of Pseudomonas aeruginosa. FEMS Microbiol Rev22:177–198
    [Google Scholar]
  21. Francetic O., Belin D., Badaut C., Pugsley A. P.. 2000; Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion. EMBO J19:6697–6703
    [Google Scholar]
  22. Gerard-Vincent M., Robert V., Ball G., Bleves S., Michel G., Lazdunski A., Filloux A.. 2002; Identification of XcpP domains that confer functionality and specificity to the Pseudomonas aeruginosa type II secretion apparatus. Mol Microbiol44:1651–1665
    [Google Scholar]
  23. Hardie K. R., Lory S., Pugsley A. P.. 1996a; Insertion of an outer membrane protein in Escherichia coli requires a chaperone-like protein. EMBO J15:978–988
    [Google Scholar]
  24. Hardie K. R., Seydel A., Guilvout I., Pugsley A. P.. 1996b; The secretin-specific, chaperone-like protein of the general secretory pathway: separation of proteolytic protection and piloting functions. Mol Microbiol22:967–976
    [Google Scholar]
  25. Hobbs M., Mattick J. S.. 1993; Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol31:1596–1600
    [Google Scholar]
  26. Hofmann K., Stoffel W.. 1993; Tmbase – a database of membrane spanning protein segments. Biol Chem347:166
    [Google Scholar]
  27. Hu N. T., Hung M. N., Liao C. T., Lin M. H.. 1995; Subcellular location of XpsD, a protein required for extracellular protein secretion by Xanthomonas campestris pv. campestris. Microbiology141:1395–1406
    [Google Scholar]
  28. Jones D. T., Taylor W. R., Thornton J. M.. 1994; A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry33:3038–3049
    [Google Scholar]
  29. Kachlany S. C., Planet P. J., Bhattacharjee M. K., Kollia E., DeSalle R., Fine D. H., Figurski D. H.. 2000; Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J Bacteriol182:6169–6176
    [Google Scholar]
  30. Krause S., Bárcena M., Pansegrau W., Lurz R., Carazo J.-M., Lanka E.. 2000; Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc Natl Acad Sci U S A97:3067–3072
    [Google Scholar]
  31. Kuan J., Saier M. H. Jr. 1993; The mitochondrial carrier family of transport proteins: structural, functional and evolutionary relationships. Crit Rev Biochem Mol Biol28:209–233
    [Google Scholar]
  32. Kuan G., Dassa E., Saurin W., Hofnung M., Saier M. H. Jr. 1995; Phylogenic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. Res Microbiol146:271–278
    [Google Scholar]
  33. Le T., Tseng T.-T., Saier M. H. Jr. 1999; Flexible programs for the estimation of average amphipathicity of multiply aligned homologous proteins: application to integral membrane transport proteins. Mol Membr Biol16:173–179
    [Google Scholar]
  34. Lee H.-M., Wang K.-C., Liu Y.-L., Yew H.-Y., Chen L.-Y., Leu W.-M., Chen D. C., Hu N.-T.. 2000; Association of the cytoplasmic membrane protein XpsN with the outer membrane protein XpsD in the type II protein secretion apparatus of Xanthomonas campestris pv. campestris. J Bacteriol182:1549–1557
    [Google Scholar]
  35. Lee H.-M., Tyan S.-W., Leu W.-M., Chen L.-Y., Chen D. C., Hu N.-T.. 2001; Involvement of the XpsN protein in formation of the XpsL-XpsM complex in Xanthomonas campestris pv. campestris type II secretion apparatus. J Bacteriol183:528–535
    [Google Scholar]
  36. Letellier L., Howard S. P., Buckley T. J.. 1997; Studies on the energetics of proaerolysin secretion across the outer membrane of Aeromonas sp: evidence for requirement for both the protonmotive force and ATP. J Biol Chem272:11109–11113
    [Google Scholar]
  37. Martinez A., Ostrovsky P., Nunn D. N.. 1998; Identification of an additional member of the secretin superfamily of proteins in Pseudomonas aeruginosa that is able to function in type II protein secretion. Mol Microbiol28:1235–1246
    [Google Scholar]
  38. Merz A. J., So M., Sheetz M. P.. 2000; Pilus retraction powers bacterial twitching motility. Nature407:98–101
    [Google Scholar]
  39. Michel G., Bleves S., Ball G., Lazdunski A., Filloux A.. 1998; Mutual stabilization of the XcpZ and XcpY components of the secretory apparatus in Pseudomonas aeruginosa. Microbiology144:3379–3386
    [Google Scholar]
  40. Nguyen L., Paulsen I. T., Tchieu J., Hueck C. J., Saier M. H. Jr. 2000; Phylogenetic analyses of the constituents of type III protein secretion systems. J Mol Microbiol Biotechnol2:125–144
    [Google Scholar]
  41. Nouwen N., Ranson N., Saibil H., Wolpensinger B., Engel A., Ghazi A., Pugsley A. P.. 1999; Secretin PulD: association with pilot protein PulS, structure and ion-conducting channel formation. Proc Natl Acad Sci U S A96:8173–8177
    [Google Scholar]
  42. Nouwen N., Stahlberg H., Pugsley A. P., Engel A.. 2000; Domain structure of secretin PulD revealed by limited proteolysis and electron microscopy. EMBO J19:2229–2236
    [Google Scholar]
  43. Nunn D.. 1999; Bacterial type II protein export and pilus biogenesis: more than just homologies?. Trends Cell Biol9:402–408
    [Google Scholar]
  44. Nunn D., Lory S.. 1992; Components of the protein excretion apparatus of Pseudomonas aeruginosa are processed by the type IV prepilin peptidase. Proc Natl Acad Sci U S A89:47–51
    [Google Scholar]
  45. Nunn D. N., Lory S.. 1993; Cleavage, methylation and localization of the Pseudomonas aeruginosa export proteins XcpT, -U, -V and -W. J Bacteriol175:4375–4382
    [Google Scholar]
  46. Nunn D., Bergman S., Lory S.. 1990; Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili. J Bacteriol172:2911–2919
    [Google Scholar]
  47. Page R. D.. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358
    [Google Scholar]
  48. Pallen M. J., Ponting C. P.. 1997; PDZ domains in bacterial proteins. Mol Microbiol26:411–413
    [Google Scholar]
  49. Pao S. S., Paulsen I. T., Saier M. H. Jr. 1998; The major facilitator superfamily. Microbiol Mol Biol Rev62:1–32
    [Google Scholar]
  50. Parge H. E., Forest K. T., Hickey M. J., Christensen D. A., Getzoff E. D., Tainer J. A.. 1995; Structure of the fibre-forming protein pilin at 2·6 Å resolution. Nature378:32–38
    [Google Scholar]
  51. Patenge N., Berendes A., Engelhardt H., Schuster S., Oesterhelt D.. 2001; The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum. Mol Microbiol41:653–663
    [Google Scholar]
  52. Planet P. J., Kachlany S. C., DeSalle R., Figurski D. H.. 2001; Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A98:2503–2508
    [Google Scholar]
  53. Possot O., Pugsley A. P.. 1994; Molecular characterization of PulE, a protein required for pullulanase secretion. Mol Microbiol12:287–299
    [Google Scholar]
  54. Possot O., Pugsley A.. 1997; The conserved tetracysteine motif in the general secretory pathway component PulE is required for efficient pullulanase secretion. Gene192:45–50
    [Google Scholar]
  55. Possot O., Letellier L., Pugsley A. P.. 1997; Energy requirement for pullulanase secretion by the main terminal branch of the general secretory pathway. Mol Microbiol24:457–464
    [Google Scholar]
  56. Possot O., Vignon G., Bomchil N., Ebel F., Pugsley A. P.. 2000; Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE. J Bacteriol182:2142–2152
    [Google Scholar]
  57. Postle K., Kadner R. J.. 2003; Touch and go: tying TonB to transport. Mol Microbiol49:869–882
    [Google Scholar]
  58. Pugsley A. P.. 1993a; The complete general secretory pathway in gram-negative bacteria. Microbiol Rev57:50–108
    [Google Scholar]
  59. Pugsley A. P.. 1993b; Processing and methylation of PulG, a pilin-like component of the general secretory pathway of Klebsiella oxytoca. Mol Microbiol9:295–308
    [Google Scholar]
  60. Pugsley A. P., Francetic O., Possot O. M., Sauvonnet N., Hardie K. R.. 1997; Recent progress and future directions in studies of the main terminal branch of the general secretory pathway in Gram-negative bacteria – a review. Gene192:13–19
    [Google Scholar]
  61. Pugsley A. P., Bayan N., Sauvonnet N.. 2001; Disulphide bond formation in secreton component PulK provides a possible explanation for the role of DsbA in pullulanase secretion. J Bacteriol183:1312–1319
    [Google Scholar]
  62. Py B., Loiseau L., Barras F.. 1999; Assembly of the type II secretion machinery of Erwinia chrysanthemi: direct interaction and associated conformational change between OutE, the putative ATP-binding component and the membrane protein OutL. J Mol Biol289:659–670
    [Google Scholar]
  63. Py B., Loiseau L., Barras F.. 2001; An inner membrane platform in the type II secretion machinery of Gram-negative bacteria. EMBO Rep2:244–248
    [Google Scholar]
  64. Saier M. H. Jr. 1994; Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev58:71–93
    [Google Scholar]
  65. Saier M. H. Jr. 1999a; Genome archeology leading to the characterization and classification of transport proteins. Curr Opin Microbiol2:555–561
    [Google Scholar]
  66. Saier M. H. Jr. 1999b; Evolutionary origins of transmembrane transport systems. In Transport of Molecules Across Microbial Membranes (Society for General Microbiology Symposium no. 58) pp 252–274 Edited by Broome-Smith J. K., Baumberg S., Stirling C. J., Ward F. B.. Cambridge: Cambridge University Press;
    [Google Scholar]
  67. Saier M. H. Jr. 2000; Vectorial metabolism and the evolution of transport systems. J Bacteriol182:5029–5035
    [Google Scholar]
  68. Saier M. H. Jr. 2001a; Evolution of transport proteins. In Genetic Engineering. Principles and Methodsvol. 23 pp 1–10 Edited by Setlow J. K.. New York: Kluwer Academic/Plenum Press;
    [Google Scholar]
  69. Saier M. H. Jr. 2001b; Families of transporters: a phylogenetic overview. In Microbial Transport Systems pp 1–22 Edited by Winkelmann G. Weinheim: Wiley;
  70. Saier M. H. Jr. 2003a; Answering fundamental questions in biology with bioinformatics. ASM News69:175–181
    [Google Scholar]
  71. Saier M. H. Jr. 2003b; Tracing pathways of transport protein evolution. Mol Microbiol48:1145–1156
    [Google Scholar]
  72. Sandkvist M.. 2001; Biology of type II secretion. Mol Microbiol40:271–283
    [Google Scholar]
  73. Sandkvist M., Bagdasarian M., Howard S. P., DiRita V. J.. 1995; Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. EMBO J14:1664–1673
    [Google Scholar]
  74. Sandkvist M., Hough L. P., Bagdasarian M. M., Bagdasarian M.. 1999; Direct interaction of the EpsL and EpsM proteins of the general secretion apparatus in Vibrio cholerae. J Bacteriol181:3129–3135
    [Google Scholar]
  75. Sandkvist M., Keith J. M., Bagdasarian M., Howard S. P.. 2000; Two regions of EpsL involved in species-specific protein-protein interactions with EpsE and EpsM of the general secretion pathway in Vibrio cholerae. J Bacteriol182:742–748
    [Google Scholar]
  76. Sauvonnet N., Vignon G., Pugsley A. P., Gounon P.. 2000; Pilus formation and protein secretion by the same machinery in Escherichia coli. EMBO J19:2221–2228
    [Google Scholar]
  77. Schmidt S. A., Bieber D., Ramer S. W., Hwang J., Wu C.-Y., Schoolnik G.. 2001; Structure-function analysis of BfpB, a secretin-like protein encoded by the bundle-forming-pilus operon of enteropathogenic Escherichia coli. J Bacteriol183:4848–4859
    [Google Scholar]
  78. Schoenhofen I. C., Stratilo C., Howard S. P.. 1998; An ExeAB complex in the type II secretion pathway of Aeromonas hydrophila: effect of ATP-binding cassette mutations on complex formation and function. Mol Microbiol29:1237–1247
    [Google Scholar]
  79. Skerker J. M., Berg H. C.. 2001; Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A98:6901–6904
    [Google Scholar]
  80. Thanassi D. G.. 2002; Ushers and secretins: channels for the secretion of folded proteins across the bacterial outer membrane. J Mol Microbiol Biotechnol4:11–20
    [Google Scholar]
  81. Thomas J. D., Reeves P. J., Salmond G. P. C.. 1997; The general secretion pathway of Erwinia carotovora subsp. carotovora: analysis of the membrane topology of OutC and OutF. Microbiology143:713–720
    [Google Scholar]
  82. Thomas N., Jarrell K.. 2001; Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins. J Bacteriol183:7154–7164
    [Google Scholar]
  83. Thomas N. A., Bardy S. L., Jarrell K. F.. 2001; The archaeal flagellum: a different kind of prokaryotic motility structure. FEMS Microbiol Rev25:147–174
    [Google Scholar]
  84. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882
    [Google Scholar]
  85. Tseng T.-T., Gratwick K. S., Kollman J., Park D., Nies D. H., Goffeau A., Saier M. H. Jr. 1999; The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J Mol Microbiol Biotechnol1:107–125
    [Google Scholar]
  86. von Heijne G.. 1992; Membrane protein structure prediction, hydrophobicity analysis and the positive-inside rule. J Mol Biol225:487–494
    [Google Scholar]
  87. von Heijne G., Gavel I.. 1988; Topogenic signals in integral membrane proteins. Eur J Biochem174:671–678
    [Google Scholar]
  88. Wolfgang M., van Putten J. P. M., Hayes S. F., Dorward D., Koomey M.. 2000; Components and dynamics of fiber formation define a ubiquitous biogenesis pathway for bacterial pili. EMBO J19:6408–6418
    [Google Scholar]
  89. Yen M. R., Peabody C. R., Partovi S. M., Zhai Y., Tseng Y. H., Saier M. H.. 2002; Protein-translocating outer membrane porins of Gram-negative bacteria. Biochim Biophys Acta1562:6–31
    [Google Scholar]
  90. Yeo H.-J., Savvides S. N., Herr A. B., Lanka E., Waksman G.. 2000; Crystal structure of the hexameric ATPase of the Helicobacter pylori type IV secretion system. Mol Cell6:1461–1472
    [Google Scholar]
  91. Young G. B., Jack D. L., Smith D. W., Saier M. H. Jr. 1999; The amino acid/auxin : proton symport permease family. Biochim Biophys Acta 1415;306–322
    [Google Scholar]
  92. Zhai Y., Saier M. H. Jr. 2001a; A web-based program for the prediction of average hydropathy, average amphipathicity and average similarity of multiply aligned homologous proteins. J Mol Microbiol Biotechnol3:285–286
    [Google Scholar]
  93. Zhai Y., Saier M. H. Jr. 2001b; A web-based program (what) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. J Mol Microbiol Biotechnol3:501–502
    [Google Scholar]
  94. Zhai Y., Saier M. H. Jr. 2002; The β-barrel finder (bbf) program, allowing identification of outer membrane-barrel proteins encoded within prokaryotic genomes. Protein Sci11:2196–2207
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26364-0
Loading
/content/journal/micro/10.1099/mic.0.26364-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error