1887

Abstract

Isolation of the temperature-sensitive mutant 72c has been described previously. The mutant allele was named and causes a pleiotropic phenotype, the most striking features of which, besides temperature sensitivity, are the inability to grow on synthetic medium and supersensitivity to trimethoprim, an antibiotic that inhibits the C metabolism. This work shows that the mutation is a frameshift mutation in the gene that encodes nicotinate mononucleotide adenylyltransferase. The frameshift leads to a change of the last 10 amino acids and an addition of 17 amino acids. This lesion, renamed , leads to very little NAD and NADPH synthesis at the permissive temperature and essentially no synthesis at the non-permissive temperature. As a comparison, a new mutation in the gene, with an amino acid change in the ATP-binding site, has been isolated. Its NAD synthesis is decreased at 30 °C but the level is still sufficient to support normal growth. At 42 °C, NAD synthesis is reduced further, which leads to temperature sensitivity on minimal medium. This mutation was designated . Thus, a small decrease in NAD levels affects ability to grow on minimal medium at 42 °C, while a large decrease leads to a more pleiotropic phenotype.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26337-0
2003-09-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492427.html?itemId=/content/journal/micro/10.1099/mic.0.26337-0&mimeType=html&fmt=ahah

References

  1. Bochner, B. R. & Ames, B. N. ( 1982; ). Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem 257, 9759–9769.
    [Google Scholar]
  2. Bullock, W. O., Fernandez, J. M. & Short, J. M. ( 1987; ). XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. Biotechniques 5, 376–379.
    [Google Scholar]
  3. Chuang, S.-E., Daniels, D. L. & Blattner, F. R. ( 1993; ). Global regulation of gene expression in Escherichia coli. J Bacteriol 175, 2026–2036.
    [Google Scholar]
  4. Foster, J. W. & Moat, A. G. ( 1980; ). Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev 44, 83–105.
    [Google Scholar]
  5. Gerdes, S. Y., Scholle, M. D., D'Souza, M. & 13 other authors (2002; ). From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways. J Bacteriol 184, 4555–4572.[CrossRef]
    [Google Scholar]
  6. Hughes, K. T., Ladika, D., Roth, J. R. & Olivera, B. ( 1983a; ). An indispensable gene for NAD biosynthesis in Salmonella typhimurium. J Bacteriol 155, 213–221.
    [Google Scholar]
  7. Hughes, K. T., Cookson, B. T., Ladika, D., Olivera, B. M. & Roth, J. R. ( 1983b; ). 6-Aminonicotinamide-resistant mutants of Salmonella typhimurium. J Bacteriol 154, 1126–1136.
    [Google Scholar]
  8. Isaksson, L. A. & Takata, R. ( 1978; ). The temperature sensitive mutant 72c. Mol Gen Genet 161, 9–14.[CrossRef]
    [Google Scholar]
  9. Isaksson, L. A., Sköld, S.-E., Skjöldebrand, J. & Takata, R. ( 1977; ). A procedure for isolation of spontaneous mutants with temperature sensitive synthesis of RNA and/or protein. Mol Gen Genet 156, 233–237.[CrossRef]
    [Google Scholar]
  10. Kurnasov, O. V., Polanuyer, B. M., Ananta, S., Sloutsky, R., Tam, A., Gerdes, S. Y. & Osterman, A. L. ( 2002; ). Ribosylnicotinamide kinase domain of NadR protein: identification and implications in NAD biosynthesis. J Bacteriol 184, 6906–6917.[CrossRef]
    [Google Scholar]
  11. Lundquist, R. & Olivera, B. M. ( 1973; ). Pyridine nucleotide metabolism in Escherichia coli. J Biol Chem 248, 5137–5143.
    [Google Scholar]
  12. Magni, G., Amici, A., Emanuelli, M. & Raffaelli, N. ( 1999; ). Enzymology of NAD+ synthesis. In Advances in Enzymology and Related Areas of Molecular Biology, pp. 135–182. Edited by D. L. Purich. Chichester: Wiley.
  13. Mehl, R. A., Kinsland, C. & Begley, T. P. ( 2000; ). Identification of the Escherichia coli nicotinic acid mononucleotide adenylyltransferase gene. J Bacteriol 182, 4372–4374.[CrossRef]
    [Google Scholar]
  14. Miller, J. H. ( 1972; ). Formulas and recipes. In Experiments in Molecular Genetics, p. 433. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  15. Miller, J. H. ( 1992; ). A Short Course in Bacterial Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  16. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  17. Singer, M., Baker, T. A., Schnitzler, G. & 7 other authors (1989; ). A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev 53, 1–24.
    [Google Scholar]
  18. Suzuki, N., Carlson, J., Griffith, G. & Gholson, R. K. ( 1973; ). Studies on the de novo biosynthesis of NAD in Escherichia coli. V. Properties of the quinolinic acid synthetase system. Biochim Biophys Acta 304, 309–315.[CrossRef]
    [Google Scholar]
  19. Zhang, H., Zhou, T., Kurnasov, O., Cheek, S., Grishin, N. V. & Osterman, A. ( 2002; ). Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD. Structure 10, 69–79.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26337-0
Loading
/content/journal/micro/10.1099/mic.0.26337-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error