1887

Abstract

is a plant-pathogenic mollicute phylogenetically related to Gram-positive bacteria. Spiroplasma cells are restricted to the phloem sieve tubes and are transmitted from plant to plant by the leafhopper vector . In the plant sieve tubes, grows on glucose and fructose, whereas in the leafhopper haemolymph the spiroplasma must grow on trehalose, the major sugar in insects. Previous studies in this laboratory have shown that fructose utilization was a key factor of spiroplasmal pathogenicity. To further study the implication of sugar metabolism in the interactions of with its plant host and its leafhopper vector, genes encoding permease enzymes II (EII and EII) of the phosphoenolpyruvate : glucose and phosphoenolpyruvate : trehalose phosphotransferase systems (PTS) were characterized. Mapping studies revealed that the EII complex was split into two distinct polypeptides, IIA and IICB, encoded by two separate genes, and , respectively. As expected, polypeptides IIA and IICB were more phylogenetically related to their counterparts from Gram-positive than to those from Gram-negative bacteria. The trehalose operon consisted of three genes , and , encoding a transcriptional regulator, the PTS permease (EII) and the amylase, respectively. However, in contrast to the fructose-PTS permease, which is encoded as a single polypeptide (IIABC) containing the three domains A, B and C, the trehalose-PTS permease (IIBC) lacks its own IIA domain. No trehalose-specific IIA could be identified in the spiroplasmal genome, suggesting that the IIBC permease probably functions with the IIA domain. In agreement with this statement, yeast two-hybrid system experiments revealed that the IIA domain interacted not only with IIB but also with the IIB domain. The results are discussed with respect to the ability of the spiroplasma to adapt from the phloem sap of the host plant to the haemolymph and salivary gland cells of the insect vector.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26336-0
2003-09-01
2020-04-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492687.html?itemId=/content/journal/micro/10.1099/mic.0.26336-0&mimeType=html&fmt=ahah

References

  1. Barthe C., de Bettignies G., Louvet O., Peypouquet M. F., Morel C., Doignon F., Crouzet M.. 1998; First characterization of the gene RGD1 in the yeast Saccharomyces cerevisiae . C R Acad SciIII 321:453–462
    [Google Scholar]
  2. Becker A., Schlöder P., Steele J. E., Wegener G.. 1996; The regulation of trehalose metabolism. Experientia52:433–439
    [Google Scholar]
  3. Bové J. M.. 1997; Spiroplasmas: infectious agents of plants, arthropods, and vertebrates. Wien Klin Wochenschr109:604–612
    [Google Scholar]
  4. Bové J. M., Carle P., Garnier M., Laigret F., Renaudin J., Saillard C.. 1989; Molecular and cellular biology of spiroplasmas. In The Mycoplasmas vol. V pp243–364 Edited by Whitcomb R. F., Tully J. G.. New York: Academic Press;
  5. Bové J. M., Renaudin J., Saillard C., Foissac X., Garnier M.. 2003; Spiroplasma citri , a plant pathogenic mollicute: relationships with its two hosts, the plant and the leafhopper vector. Annu Rev Phytopathol41: in press
    [Google Scholar]
  6. Chambaud I., Heilig R., Ferris S.. 9 other authors 2001; The complete genome sequence of the murine respiratory pathogen Mycoplasma pulmonis . Nucleic Acids Res29:2145–2153
    [Google Scholar]
  7. Chang C. J.. 1998; Pathogenicity of aster yellows phytoplasma and S. citri on periwinkle. Phytopathology88:1347–1350
    [Google Scholar]
  8. Corpet F.. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res16:10881–10890
    [Google Scholar]
  9. Cottew G. S., Yeats F. R.. 1982; Mycoplasmas and mites in the ears of clinically normal goats. Aust Vet J59:77–81
    [Google Scholar]
  10. Daniels M. J.. 1983; Mechanisms of spiroplasma pathogenicity. Annu Rev Phytopathol21:29–43
    [Google Scholar]
  11. Fletcher J., Wayadande A., Melcher U., Ye F.. 1998; The phytopathogenic mollicute–insect vector interface: a closer look. Phytopathology88:1351–1358
    [Google Scholar]
  12. Foissac X., Danet J. L., Saillard C., Whitcomb R. F., Bové J. M.. 1996; Experimental infection of plants by spiroplasmas. In Molecular and Diagnostic Procedures in Mycoplasmology vol. 2 pp385–389 Edited by Razin S., Tully J. G.. New York: Academic Press;
  13. Foissac X., Saillard C., Danet J. L., Gaurivaud P., Paré C., Laigret F., Bové J. M.. 1997; Mutagenesis by insertion of transposon Tn 4001 into the genome of Spiroplasma citri : characterization of mutants affected in plant pathogenicity and transmission to the plant by the leafhopper vector Circulifer haematoceps . Mol Plant–Microbe Interact10:454–461
    [Google Scholar]
  14. Foulger D., Errington J.. 1998; A 28 kbp segment from the spoVM region of the B. subtilis 168 genome. Microbiology144:801–805
    [Google Scholar]
  15. Fraser C. M., Gocayne J. D., White O.. 26 other authors 1995; The minimal gene complement of Mycoplasma genitalium . Science270:397–403
    [Google Scholar]
  16. Gaurivaud P., Danet J. L., Laigret F., Garnier M., Bové J. M.. 2000a; Fructose utilization and pathogenicity of Spiroplasma citri . Mol Plant–Microbe Interact13:1145–1155
    [Google Scholar]
  17. Gaurivaud P., Laigret F., Garnier M., Bové J. M.. 2000b; Fructose utilization and pathogenicity of Spiroplasma citri : characterization of the fructose operon. Gene252:61–69
    [Google Scholar]
  18. Gaurivaud P., Laigret F., Garnier M., Bové J. M.. 2001; Characterization of FruR as a putative activator of the fructose operon of Spiroplasma citri . FEMS Microbiol Lett198:73–78
    [Google Scholar]
  19. Gietz R. D., Schiestl R. H., Willems A. R., Woods R. A.. 1995; Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast11:355–360
    [Google Scholar]
  20. Himmelreich R., Hilbert H., Plagens H., Pirkl E., Li B. C., Herrmann R.. 1996; Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae . Nucleic Acids Res24:4420–4449
    [Google Scholar]
  21. Huang K., Kapadia G., Zhu P. P., Peterkofsky A., Herzberg O.. 1998; A promiscuous binding surface: crystal structure of the IIA domain of the glucose-specific permease from Mycoplasma capricolum . Structure15:697–710
    [Google Scholar]
  22. Kumar S., Tamura K., Jakobsen I. B., Nei M.. 2001; MEGA2: molecular evolutionary genetics analysis software. Bioinformatics17:1244–1245
    [Google Scholar]
  23. Lanz R., Erni B.. 1998; The glucose transporter of the Escherichia coli phosphotransferase system. Mutant analysis of invariant arginines, histidines, and domain linker. J Biol Chem273:12239–12243
    [Google Scholar]
  24. Lengeler J. W., Titgemeyer F., Vogler A. P., Wöhrl B. M.. 1990; Structure and homologies of carbohydrate : phosphotransferase system (PTS) proteins. Philos Trans R Soc Lond Ser B Biol Sci326:489–504
    [Google Scholar]
  25. Lengeler J. W., Jahreis K., Wehmeier U. F.. 1994; Enzymes II of the phosphoenol-pyruvate-dependent phosphotransferase systems: their structure and function in carbohydrate transport. Biochim Biophys Acta 1188;1–28
    [Google Scholar]
  26. Lepka P., Stitt M., Moll E., Seemüller E.. 1999; Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol Mol Plant Pathol55:59–68
    [Google Scholar]
  27. Louvet O., Doignon F., Crouzet M.. 1997; Stable DNA-binding yeast vector allowing high bait expression for use in the two-hybrid system. Biotechniques23:816–817
    [Google Scholar]
  28. Mao Q., Schunk T., Gerber B., Erni B.. 1995; A string of enzymes: purification and characterization of a fusion protein comprising the four subunits of the glucose phosphotransferase system of Escherichia coli . J Biol Chem270:18295–18300
    [Google Scholar]
  29. McCoy R. E., Caudwell A., Chang C. J.. 16 other authors 1989; Plant diseases associated with mycoplasma-like organisms. In The Mycoplasmas vol. V pp545–640 Edited by Whitcomb R. F., Tully J. G.. New York: Academic Press;
  30. Postma P. W., Lengeler J. W., Jacobson G. R.. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev57:543–594
    [Google Scholar]
  31. Presper K. A., Wong C.-Y., Liu L., Meadow N. D., Roseman S.. 1989; Site-directed mutagenesis of the phosphocarrier protein, IIIGlc, a major signal-transducing protein in Escherichia coli . Proc Natl Acad Sci U S A86:4052–4055
    [Google Scholar]
  32. Reizer J., Saier M. J.. 1997; Modular multidomain phosphoryl transfer protein of bacteria. Curr Opin Struct Biol7:407–415
    [Google Scholar]
  33. Renaudin J.. 2002; Extrachromosomal elements and gene transfer. In Molecular Biology and Pathogenicity of Mycoplasmas pp347–370 Edited by Razin S., Herrmann R.. New York: Kluwer/Plenum;
  34. Saglio P., Laflèche D., Bonissol C., Bové J. M.. 1971; Culture in vitro des mycoplasmes associés au stubborn des agrumes et leur observation au microscope électronique. C R Acad Sci272:1387–1390
    [Google Scholar]
  35. Saglio P., Lhospital M., Laflèche D., Dupont G., Bové J. M., Tully J. G., Freundt E. A.. 1973; Spiroplasma citri gen. and sp. n.: a mycoplasma-like organism associated with ‘stubborn’ disease of citrus. Int J Syst Bacteriol23:191–204
    [Google Scholar]
  36. Saier M. H., Reizer J.. 1992; Proposed uniform nomenclature for the protein and protein domains of the bacterial phosphoenolpyruvate : sugar phosphotransferase system. J Bacteriol174:1433–1438
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  38. Seemüller E., Garnier M., Schneider B.. 2002; Mycoplasmas of plants and insects. In Molecular Biology and Pathogenicity of Mycoplasmas pp91–115 Edited by Razin S., Herrmann R. New York: Kluwer/Plenum;
  39. Sherman F., Fink G. R., Hicks J. B.. 1986; Methods in Yeast Genetics, Laboratory Course Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  40. Vignault J. C., Bové J. M., Saillard C.. 17 other authors 1980; Mise en culture de spiroplasmes à partir de matériel végétal et d'insectes provenant de pays circum méditerranéens et du Proche Orient. C R Acad Sci III 290:775–780
    [Google Scholar]
  41. Weisburg W. G., Tully J. G., Rose D. L.. 9 other authors 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol171:6455–6467
    [Google Scholar]
  42. Whitcomb R. F.. 1983; Culture media for spiroplasmas. Methods Mycoplasmol1:147–159
    [Google Scholar]
  43. Zagorec M., Postma P. W.. 1992; Cloning and nucleotide sequence of the ptsG gene of Bacillus subtilis . Mol Gen Genet234:325–328
    [Google Scholar]
  44. Zhu P. P., Reizer J., Peterkofsky A.. 1994; Unique dicistronic operon ( ptsI - crr) in Mycoplasma capricolum encoding enzyme I and the glucose-specific enzyme IIA of the phosphoenolpyruvate : sugar phosphotransferase system: cloning, sequencing, promoter analysis, and protein characterization. Protein Sci3:2115–2128
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26336-0
Loading
/content/journal/micro/10.1099/mic.0.26336-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error