1887

Abstract

The proteins involved in the utilization of -arabinose are encoded by the metabolic operon and by the / divergent unit. Transcription from the operon, transport gene and regulatory gene is induced by -arabinose and negatively controlled by AraR. Additionally, expression of both the operon and the gene is regulated at the transcriptional level by glucose repression. Here, by transcriptional fusion analysis in different mutant backgrounds, it is shown that CcpA most probably complexed with HPr-Ser46-P plays the major role in carbon catabolite repression of the regulon by glucose and glycerol. Site-directed mutagenesis and deletion analysis indicate that two catabolite responsive elements (s) present in the operon ( and ) and one in the gene () are implicated in this mechanism. Furthermore, located between the promoter region of the operon and the gene, and placed 2 kb downstream within the gene are independently functional and both contribute to glucose repression. In Northern blot analysis, in the presence of glucose, a CcpA-dependent transcript consistent with a message stopping at was detected, suggesting that transcription ‘roadblocking’ of RNA polymerase elongation is the most likely mechanism operating in this system. Glucose exerts an additional repression of the regulon, which requires a functional .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26326-0
2003-09-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492345.html?itemId=/content/journal/micro/10.1099/mic.0.26326-0&mimeType=html&fmt=ahah

References

  1. Ali, N. O., Bignon, J., Rapoport, G. & Débarbouillé, M. ( 2001; ). Regulation of the acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. J Bacteriol 183, 2497–2504.[CrossRef]
    [Google Scholar]
  2. Aung-Hilbrich, L. M., Seidel, G., Wagner, A. & Hillen, W. ( 2002; ). Quantification of the influence of HPrSer46P on CcpA-cre interaction. J Mol Biol 319, 77–85.[CrossRef]
    [Google Scholar]
  3. Darbon, E., Servant, P., Poncet, S. & Deutscher, J. ( 2002; ). Antitermination by GlpP, catabolite repression via CcpA and inducer exclusion triggered by P-GlpK dephosphorylation control Bacillus subtilis glpFK expression. Mol Microbiol 43, 1039–1052.[CrossRef]
    [Google Scholar]
  4. Deutscher, J., Reizer, J., Fischer, C., Galinier, A., Saier, M. H., Jr & Steinmetz, M. ( 1994; ). Loss of protein kinase-catalyzed phosphorylation of HPr, a phospho-carrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis. J Bacteriol 176, 3336–3344.
    [Google Scholar]
  5. Deutscher, J., Kuster, E., Bergstedt, U., Charrier, V. & Hillen, W. ( 1995; ). Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 15, 1049–1053.[CrossRef]
    [Google Scholar]
  6. Deutscher, J., Galinier, A. & Martin-Verstraete, I. ( 2002; ). Carbohydrate uptake and metabolism. In Bacillus subtilis and its Closest Relatives: from Genes to Cells, pp. 129–150. Edited by A. L. Sonenshein, J. A. Hoch & R. Losick. Washington, DC: American Society for Microbiology.
  7. Drider, D., DiChiara, J. M., Wei, J., Sharp, J. S. & Bechhofer, D. H. ( 2002; ). Endonuclease cleavage of messenger RNA in Bacillus subtilis. Mol Microbiol 43, 319–329.
    [Google Scholar]
  8. Fujita, Y., Miwa, Y., Galinier, A. & Deutscher, J. ( 1995; ). Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr. Mol Microbiol 17, 953–960.[CrossRef]
    [Google Scholar]
  9. Galinier, A., Haiech, J., Kilhoffer, M. C., Jaquinod, M., Stülke, J., Deutscher, J. & Martin-Verstraete, I. ( 1997; ). The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci U S A 94, 8439–8444.[CrossRef]
    [Google Scholar]
  10. Galinier, A., Kravanja, M., Engelmann, R., Hengstenberg, W., Kilhoffer, M. C., Deutscher, J. & Haiech, J. ( 1998; ). New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci U S A 95, 1823–1828.[CrossRef]
    [Google Scholar]
  11. Galinier, A., Deutscher, J. & Martin-Verstraete, I. ( 1999; ). Phosphorylation of either Crh or HPr mediates binding of CcpA to the Bacillus subtilis xyn cre and catabolite repression of the xyn operon. J Mol Biol 286, 307–314.[CrossRef]
    [Google Scholar]
  12. Gösseringer, R., Küster, E., Galinier, A., Deutscher, J. & Hillen, W. ( 1997; ). Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. J Mol Biol 266, 665–676.[CrossRef]
    [Google Scholar]
  13. Grundy, F. J., Turinsky, A. J. & Henkin, T. M. ( 1994; ). Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. J Bacteriol 176, 4527–4533.
    [Google Scholar]
  14. Henkin, T. M., Grundy, F. J., Nicholson, W. L. & Chambliss, G. H. ( 1991; ). Catabolite repression of α-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacI and galR repressors. Mol Microbiol 5, 575–584.[CrossRef]
    [Google Scholar]
  15. Jones, B. E., Dossonnet, Y., Küster, E., Hillen, W., Deutscher, J. & Klevit, R. E. ( 1997; ). Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 272, 26530–26535.[CrossRef]
    [Google Scholar]
  16. Kim, J. H. & Chambliss, G. H. ( 1997; ). Contacts between Bacillus subtilis catabolite regulatory protein CcpA and amyO target site. Nucleic Acids Res 25, 3490–3496.[CrossRef]
    [Google Scholar]
  17. Kim, J. H., Voskuil, M. I. & Chambliss, G. H. ( 1998; ). NADP, corepressor for the Bacillus catabolite control protein CcpA. Proc Natl Acad Sci U S A 95, 9590–9595.[CrossRef]
    [Google Scholar]
  18. Kraus, A., Hueck, C., Gartner, D. & Hillen, W. ( 1994; ). Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression. J Bacteriol 176, 1738–1745.
    [Google Scholar]
  19. Kraus, A., Küster, E., Wagner, A., Hoffmann, K. & Hillen, W. ( 1998; ). Identification of a co-repressor binding site in catabolite control protein CcpA. Mol Microbiol 30, 955–963.[CrossRef]
    [Google Scholar]
  20. Krispin, O. & Allmansberger, R. ( 1998; ). The Bacillus subtilis AraE protein displays a broad substrate specificity for several different sugars. J Bacteriol 180, 3250–3252.
    [Google Scholar]
  21. Lepesant, J. A. & Dedonder, R. ( 1967; ). Metabolisme du l-arabinose chez Bacillus subtilis Marburg Ind 168. C R Acad Sci Ser D 264, 2683–2686.
    [Google Scholar]
  22. Ludwig, H., Rebhan, N., Blencke, H. M., Merzbacher, M. & Stülke, J. ( 2002; ). Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis: a novel mechanism of CcpA-mediated regulation. Mol Microbiol 45, 543–553.[CrossRef]
    [Google Scholar]
  23. Martin-Verstraete, I., Débarbouillé, M., Klier, A. & Rapoport, G. ( 1990; ). Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. J Mol Biol 214, 657–671.[CrossRef]
    [Google Scholar]
  24. Martin-Verstraete, I., Stülke, J., Klier, A. & Rapoport, G. ( 1995; ). Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. J Bacteriol 177, 6919–6927.
    [Google Scholar]
  25. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  26. Miwa, Y. & Fujita, Y. ( 2001; ). Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol (iol) operon. J Bacteriol 183, 5877–5884.[CrossRef]
    [Google Scholar]
  27. Miwa, Y., Nagura, K., Eguchi, S., Fukuda, H., Deutscher, J. & Fujita, Y. ( 1997; ). Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements. Mol Microbiol 23, 1203–1213.[CrossRef]
    [Google Scholar]
  28. Miwa, Y., Nakata, A., Ogiwara, A., Yamamoto, M. & Fujita, Y. ( 2000; ). Evaluation and characterization of catabolite-responsive elements (cre) of Bacillus subtilis. Nucleic Acids Res 28, 1206–1210.[CrossRef]
    [Google Scholar]
  29. Moran, C. P., Jr, Lang, N., Le Grice, S. F. J., Lee, G., Stephens, M., Sonenshein, A. L., Pero, J. & Losick, R. ( 1982; ). Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis. Mol Gen Genet 186, 339–346.[CrossRef]
    [Google Scholar]
  30. Moreno, M. S., Schneider, B. L., Maile, R. R., Weyler, W. & Saier, M. H., Jr ( 2001; ). Catabolite repression mediated by the CcpA protein in Bacillus subtilis: novel modes of regulation revealed by whole-genome analyses. Mol Microbiol 39, 1366–1381.[CrossRef]
    [Google Scholar]
  31. Mota, L. J., Tavares, P. & Sá-Nogueira, I. ( 1999; ). Mode of action of AraR, the key regulator of l-arabinose metabolism in Bacillus subtilis. Mol Microbiol 33, 476–489.[CrossRef]
    [Google Scholar]
  32. Mota, L. J., Sarmento, L. M. & Sá-Nogueira, I. ( 2001; ). Control of the arabinose regulon in Bacillus subtilis by AraR in vivo: crucial roles of operators, cooperativity, and DNA looping. J Bacteriol 183, 4190–4201.[CrossRef]
    [Google Scholar]
  33. Pascal, M., Kunst, F., Lepesant, J. A. & Dedonder, R. ( 1971; ). Characterization of two sucrase activities in Bacillus subtilis Marburg. Biochimie 53, 1059–1066.[CrossRef]
    [Google Scholar]
  34. Reizer, J., Hoischen, C., Titgemeyer, F., Rivolta, C., Rabus, R., Stülke, J., Karamata, D., Saier, M. H., Jr & Hillen, W. ( 1998; ). A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol 27, 1157–1169.[CrossRef]
    [Google Scholar]
  35. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Sá-Nogueira, I. & Lencastre, H. ( 1989; ). Cloning and characterization of araA, araB and araD, the structural genes for l-arabinose utilization in Bacillus subtilis. J Bacteriol 171, 4088–4091.
    [Google Scholar]
  37. Sá-Nogueira, I. & Mota, L. J. ( 1997; ). Negative regulation of l-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene. J Bacteriol 179, 1598–1608.
    [Google Scholar]
  38. Sá-Nogueira, I. & Ramos, S. ( 1997; ). Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in l-arabinose utilization. J Bacteriol 179, 7705–7711.
    [Google Scholar]
  39. Sá-Nogueira, I., Paveia, H. & Lencastre, H. ( 1988; ). Isolation of constitutive mutants for l-arabinose utilization in Bacillus subtilis. J Bacteriol 170, 2855–2857.
    [Google Scholar]
  40. Sá-Nogueira, I., Nogueira, T. V., Soares, S. & de Lencastre, H. ( 1997; ). The Bacillus subtilis l-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. Microbiology 143, 957–969.[CrossRef]
    [Google Scholar]
  41. Strauch, M. A. ( 1995; ). AbrB modulates expression and catabolite repression of a Bacillus subtilis ribose transport operon. J Bacteriol 177, 6727–6731.
    [Google Scholar]
  42. Stülke, J. & Hillen, W. ( 2000; ). Regulation of carbon catabolism in Bacillus species. Annu Rev Microbiol 54, 849–880.[CrossRef]
    [Google Scholar]
  43. Weickert, M. J. & Chambliss, G. H. ( 1990; ). Site-directed mutagenesis of a catabolic repression operator sequence in Bacillus subtilis. Proc Natl Acad Sci U S A 87, 6238–6242.[CrossRef]
    [Google Scholar]
  44. Wray, L. W., Jr, Pettengil, F. K. & Fisher, S. H. ( 1994; ). Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site. J Bacteriol 176, 1894–1902.
    [Google Scholar]
  45. Yoshida, K., Kobayashi, K., Miwa, Y. & 9 other authors ( 2001; ). Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 29, 683–692.[CrossRef]
    [Google Scholar]
  46. Zalieckas, J. M., Wray, L. V., Jr, Ferson, A. E. & Fisher, S. H. ( 1998a; ). Transcription-repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons. Mol Microbiol 27, 1031–1038.[CrossRef]
    [Google Scholar]
  47. Zalieckas, J. M., Wray, L. V., Jr & Fisher, S. H. ( 1998b; ). Expression of the Bacillus subtilis acsA gene: position and sequence context affect cre-mediated carbon catabolite repression. J Bacteriol 180, 6649–6654.
    [Google Scholar]
  48. Zalieckas, J. M., Wray, L. V., Jr & Fisher, S. H. ( 1999; ). trans-Acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis. J Bacteriol 181, 2883–2888.
    [Google Scholar]
  49. Zeng, X., Galinier, A. & Saxild, H. H. ( 2000; ). Catabolite repression of dranupCpdp operon expression in Bacillus subtilis. Microbiology 146, 2901–2908.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26326-0
Loading
/content/journal/micro/10.1099/mic.0.26326-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error