1887

Abstract

Quorum sensing systems serve as a means of ‘census taking’ of conspecific and non-conspecific bacteria in the near vicinity. The acylated homoserine lactone (AHL) quorum sensing system has been proposed to be primarily an intra-specific communication system, while the AI-2 autoinducer signalling system is proposed to be an interspecific communication system. Here it is shown that AI-2-like signalling in two marine species, and ‘’ S14, induces the core response phenotypes of starvation adaptation and stress resistance, and that a signal antagonist can competitively inhibit these phenotypes. Furthermore, the signals produced by a range of species have the ability to induce these phenotypes in and ‘’ S14, indicating that, at least in species, AI-2-like signalling systems function as interspecies communication systems capable of ‘cross-talk’ and of regulating environmentally relevant phenotypes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26321-0
2003-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491923.html?itemId=/content/journal/micro/10.1099/mic.0.26321-0&mimeType=html&fmt=ahah

References

  1. Bainton N. J., Bycroft B. W., Chhabra S. R. 7 other authors 1992; A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia . Gene 116:87–91
    [Google Scholar]
  2. Bassler B. L. 2002; Small talk: cell-to-cell communication in bacteria. Cell 109:421–424
    [Google Scholar]
  3. Bassler B. L., Silverman M. R. 1995; Intercellular communication in marine Vibrio species: density-dependent regulation of the expression of bioluminescence. In Two-Component Signal Transduction pp  431–445 Edited by Hoch J. A., Silhavey T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Bassler B. L., Wright M., Showalter R. E., Silverman M. R. 1993; Intercellular signalling in Vibrio harveyi : sequence and function of genes regulating expression of luminescence. Mol Microbiol 9:773–786
    [Google Scholar]
  5. Bassler B. L., Wright M., Silverman M. R. 1994; Multiple signalling systems controlling expression of luminescence in Vibrio harveyi : sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13:273–286
    [Google Scholar]
  6. Bassler B. L., Greenberg E. P., Stevens A. M. 1997; Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi . J Bacteriol 179:4043–4045
    [Google Scholar]
  7. Beck von Bodman S., Farrand S. K. 1995; Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N -acyl-homoserine lactone autoinducer. J Bacteriol 177:5000–5008
    [Google Scholar]
  8. Cao J.-G., Meighen E. A. 1989; Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi . J Biol Chem 264:21670–21676
    [Google Scholar]
  9. Chen X., Schauder S., Potier N., Van Dorsselaer A., Pelczer I., Bassler B. L., Hughson F. M. 2002; Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549
    [Google Scholar]
  10. Dukan S., Nyström T. 1998; Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev 12:3431–3441
    [Google Scholar]
  11. Dukan S., Nyström T. 1999; Oxidative stress defence and deterioration of growth-arrested Escherichia coli cells. J Biol Chem 274:26027–26032
    [Google Scholar]
  12. Eberhard A., Burlingame A. L., Eberhard C., Kenyon G. L., Nealson K. H., Oppenheimer N. J. 1981; Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:444–449
    [Google Scholar]
  13. Eberl L., Christiansen G., Molin S., Givskov M. 1996; Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhD master operon. J Bacteriol 178:554–559
    [Google Scholar]
  14. Engelbrecht J., Nealson K. H., Silverman M. R. 1983; Bacterial bioluminescence: isolation and genetic analysis of the functions from Vibrio fischeri . Cell 32:773–781
    [Google Scholar]
  15. Freeman J. A., Bassler B. L. 1999a; Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi . J Bacteriol 181:899–906
    [Google Scholar]
  16. Freeman J. A., Bassler B. L. 1999b; A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi . Mol Microbiol 31:665–677
    [Google Scholar]
  17. Gambello M. J., Iglewski B. H. 1991; Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 173:3000–3009
    [Google Scholar]
  18. Gong L., Takayama K., Kjelleberg S. 2002; Role of spoT -dependent ppGpp accumulation in the survival of light-exposed starved bacteria. Microbiology 148:559–570
    [Google Scholar]
  19. Hild E., Takayama K., Olsson R.-M., Kjelleberg S. 2000; Evidence for a role of rpoE in stressed and unstressed cells of marine Vibrio angustum strain S14. J Bacteriol 182:6964–6974
    [Google Scholar]
  20. Hoben H. J., Somasegaran P. 1982; Comparison of the pour, spread, and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peat. Appl Environ Microbiol 44:1246–1247
    [Google Scholar]
  21. Humphrey B., Kjelleberg S., Marshall K. C. 1983; Responses of marine bacteria under starvation conditions at a solid-water interface. Appl Environ Microbiol 45:43–47
    [Google Scholar]
  22. Jobling M. G., Holmes R. K. 1997; Characterization of hapR , a positive regulator of the Vibrio cholerae HA/protease gene hap , and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol Microbiol 26:1023–1034
    [Google Scholar]
  23. Manefield M., de Nys R., Kumar N., Read R., Givskov M., Steinberg P., Kjelleberg S. 1999; Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291
    [Google Scholar]
  24. Manefield M., Rasmussen T. B., Henzter M., Andersen J. B., Steinberg P., Kjelleberg S., Givskov M. 2002; Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127
    [Google Scholar]
  25. McCarter L. L. 1998; OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus . J Bacteriol 180:3166–3173
    [Google Scholar]
  26. McDougald D., Rice S. A., Kjelleberg S. 2000; The marine pathogen, Vibrio vulnificus encodes a putative homologue of the Vibrio harveyi regulatory gene, luxR : a genetic and phylogenetic comparison. Gene 248:213–221
    [Google Scholar]
  27. McDougald D., Rice S. A., Kjelleberg S. 2001; SmcR-dependent regulation of adaptive responses in Vibrio vulnificus . J Bacteriol 183:758–762
    [Google Scholar]
  28. Miller M. B., Skorupski K., Lenz D. H., Taylor R. K., Bassler B. L. 2002; Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae . Cell 110:303–314
    [Google Scholar]
  29. Oliver J. D. 1993a; Formation of viable but nonculturable cells. In Starvation in Bacteria pp  239–272 Edited by Kjelleberg S. New York: Plenum;
    [Google Scholar]
  30. Oliver J. D. 1993b; Nonculturability and resuscitation of Vibrio vulnificus . In Trends in Microbial Ecology pp  187–191 Edited by Pedrós-Alió R. G. C. Madrid: Spanish Society for Microbiology;
    [Google Scholar]
  31. Oliver J. D. 1995; The viable but non-culturable state in the human pathogen Vibrio vulnificus . FEMS Microbiol Lett 133:203–208
    [Google Scholar]
  32. Oliver J. D., Warner R. A., Cleland D. R. 1982; Distribution and ecology of Vibrio vulnificus and other lactose-fermenting marine vibrios in coastal waters of the southeastern United States. Appl Environ Microbiol 44:1404–1414
    [Google Scholar]
  33. Oliver J. D., Nilsson L., Kjelleberg S. 1991; The formation of nonculturable Vibrio vulnificus cells and its relationship to the starvation state. Appl Environ Microbiol 57:2640–2644
    [Google Scholar]
  34. Östling J., Goodman A., Kjelleberg S. 1991; Behavior of Inc-P1 plasmids and a miniMu transposon in a marine Vibrio sp. isolation of starvation inducible lac operon fusions. FEMS Microbiol Ecol 86:83–94
    [Google Scholar]
  35. Paludan-Müller C., Weichart D., McDougald D., Kjelleberg S. 1996; Analysis of starvation conditions that allow for prolonged culturability of Vibrio vulnificus at low temperature. Microbiology 142:1675–1684
    [Google Scholar]
  36. Passador L., Cook J. M., Gambello M. J., Rust L., Iglewski B. H. 1993; Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260:1127–1130
    [Google Scholar]
  37. Piper K. R., von Bodman S. B., Farrand S. K. 1993; Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature 362:448–450
    [Google Scholar]
  38. Redfield R. J. 2002; Is quorum sensing a side effect of diffusion sensing?. Trends Microbiol 10:365–370
    [Google Scholar]
  39. Ruby E. G., Nealson K. H. 1976; Symbiotic association of Photobacterium fischeri with the luminous fish Monocentris japonica : a model of symbiosis based on bacterial studies. Biol Bull 141:574–586
    [Google Scholar]
  40. Srinivasan S., Kjelleberg S. 1998; Cycles of famine and feast – the starvation and outgrowth strategies of a marine Vibrio . J Biosci 23:501–511
    [Google Scholar]
  41. Srinivasan S., Ostling J., Charlton T., de Nys R., Takayama K., Kjelleberg S. 1998; Extracellular signal molecule(s) involved in the carbon starvation response of marine Vibrio sp. strain S14. J Bacteriol 180:201–209
    [Google Scholar]
  42. Surette M. G., Bassler B. L. 1998; Quorum sensing in Escherichia coli and Salmonella typhimurium . Proc Natl Acad Sci U S A 95:7046–7050
    [Google Scholar]
  43. Throup J. P., Camara M., Briggs G. S., Winson M. K., Chhabra S. R., Bycroft B. W., Williams P., Stewart G. S. A. B. 1995; Characterisation of the yenl / yenR locus from Yersinia enterocolitica mediating the synthesis of two N -acylhomoserine lactone signal molecules. Mol Microbiol 17:345–356
    [Google Scholar]
  44. Väätänen P. 1976; Microbiological studies in coastal waters of the Northern Baltic sea. I. Distribution and abundance of bacteria and yeasts in the Tvärminne area. Walter Andre de Nottbeck Found Sci Rep 1:1–58
    [Google Scholar]
  45. Visick K. L., Ruby E. G. 1997; New genetic tools for use in the marine bioluminescent bacterium Vibrio fischeri . In Bioluminescence and Chemiluminescence pp  119–122 Edited by Hastings J. W., Kricka L. J., Stanley P. E. Chichester: Wiley;
    [Google Scholar]
  46. Winzer K., Hardie K. R., Williams P. 2002a; Bacterial cell-to-cell communication: Sorry, can't talk now – gone to lunch!. Curr Opin Microbiol 5:216–222
    [Google Scholar]
  47. Winzer K., Hardie K. R., Burgess N. 8 other authors 2002b; LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3 (2H)-furanone. Microbiology 148:909–922
    [Google Scholar]
  48. Zhu J., Miller M. B., Vance R. E., Dziejman M., Bassler B. L., Mekalanos J. J. 2002; Quorum-sensing regulators control virulence gene expression in Vibrio cholerae . Proc Natl Acad Sci U S A 99:3129–3134
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26321-0
Loading
/content/journal/micro/10.1099/mic.0.26321-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error