1887

Abstract

var. ATCC 39149 contains a temperate bacteriophage, pMLP1, that is present both as a replicative element and integrated into the chromosome. Sequence analysis of a 4·4 kb I fragment revealed pMLP1 / functions consisting of an integrase, an excisionase and the phage attachment site (). Plasmids pSPRH840 and pSPRH910, containing the pMLP1 / region, were introduced into spp. by conjugation from . Sequence analysis of DNA flanking the integration site confirmed site-specific integration into a tRNA gene in the chromosome. The pMLP1 element and chromosomal bacterial attachment () site contain a 24 bp region of sequence identity located at the 3′ end of the tRNA. Integration of pMLP1-based plasmids in var. caused a loss of the pMLP1 phage. Placement of an additional site into the chromosome allowed integration of pSPRH840 into the alternate site. Plasmids containing the site-specific / functions of pMLP1 can be used to integrate genes into the chromosome.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26318-0
2003-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492443.html?itemId=/content/journal/micro/10.1099/mic.0.26318-0&mimeType=html&fmt=ahah

References

  1. Alexander D. C., Jensen S. E. 1998; Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein. J Bacteriol 180:4068–4079
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  3. Argos P., Landy A., Abremski K. 9 other authors 1986; The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5:433–440
    [Google Scholar]
  4. Baltz R. H., Hosted T. J. 1996; Molecular genetic methods for improving secondary-metabolite production in actinomycetes. Trends Biotechnol 14:245–250
    [Google Scholar]
  5. Baltz R. H., Matsushima P. 1983; Advances in protoplast fusion and transformation in Streptomyces . Experientia Suppl 46:143–148
    [Google Scholar]
  6. Bar-Nir D., Cohen A., Goedeke M. E. 1992; tDNA(ser) sequences are involved in the excision of Streptomyces griseus plasmid pSG1. Gene 122:71–76
    [Google Scholar]
  7. Bibb M. J., Ward J. M., Kieser T., Cohen S. N., Hopwood D. A. 1981; Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans . Mol Gen Genet 184:230–240
    [Google Scholar]
  8. Bierman M., Logan R., O'Brien K., Seno E. T., Rao R. N., Schoner B. E. 1992; Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49
    [Google Scholar]
  9. Boccard F., Smokvina T., Pernodet J. L., Friedmann A., Guerineau M. 1989a; The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J 8:973–980
    [Google Scholar]
  10. Boccard F., Smokvina T., Pernodet J. L., Friedmann A., Guerineau M. 1989b; Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces . Plasmid 21:59–70
    [Google Scholar]
  11. Brown D. P., Chiang S. J., Tuan J. S., Katz L. 1988; Site-specific integration in Saccharopolyspora erythraea and multisite integration in Streptomyces lividans of actinomycete plasmid pSE101. J Bacteriol 170:2287–2295
    [Google Scholar]
  12. Brown D. P., Idler K. B., Katz L. 1990; Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea . J Bacteriol 172:1877–1888
    [Google Scholar]
  13. Brown D. P., Idler K. B., Backer D. M., Donadio S., Katz L. 1994; Characterization of the genes and attachment sites for site-specific integration of plasmid pSE101 in Saccharopolyspora erythraea and Streptomyces lividans . Mol Gen Genet 242:185–193
    [Google Scholar]
  14. Cohen A., Bar-Nir D., Goedeke M. E., Parag Y. 1985; The integrated and free states of Streptomyces griseus plasmid pSG1. Plasmid 13:41–50
    [Google Scholar]
  15. Esposito D., Scocca J. J. 1997; The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res 25:3605–3614
    [Google Scholar]
  16. Flett F., Mersinias V., Smith C. P. 1997; High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229
    [Google Scholar]
  17. Foster D. R., Rybak M. J. 1999; Pharmacologic and bacteriologic properties of SCH-27899 (Ziracin), an investigational antibiotic from the everninomicin family. Pharmacotherapy 19:1111–1117
    [Google Scholar]
  18. Freitas-Vieira A., Anes E., Moniz-Pereira J. 1998; The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. Microbiology 144:3397–3406
    [Google Scholar]
  19. Gabriel K., Schmid H., Schmidt U., Rausch H. 1995; The actinophage RP3 DNA integrates site-specifically into the putative tRNA(Arg) (AGG) gene of Streptomyces rimosus . Nucleic Acids Res 23:58–63
    [Google Scholar]
  20. Garbe T. R., Barathi J., Barnini S., Zhang Y., Abou-Zeid C., Tang D., Mukherjee R., Young D. B. 1994; Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology 140:133–138
    [Google Scholar]
  21. Hopwood D. A., Hintermann G., Kieser T., Wright H. M. 1984; Integrated DNA sequences in three streptomycetes form related autonomous plasmids after transfer to Streptomyces lividans . Plasmid 11:1–16
    [Google Scholar]
  22. Horan A. H., Brodsky B. 1986; Micromonospora rosaria sp. nov., the rosaramicin producer. Int J Syst Bacteriol 36:478–480
    [Google Scholar]
  23. Hosted T. J., Rochefort D. A., Benson D. R. 1993; Close linkage of genes encoding glutamine synthetases I and II in Frankia alni CpI1. J Bacteriol 175:3679–3684
    [Google Scholar]
  24. Hosted T. J., Wang T. X., Alexander D. C., Horan A. C. 2001; Characterization of the biosynthetic gene cluster for the oligosaccharide antibiotic, evernimicin, in Micromonospora carbonacea var. africana ATCC 39149. J Ind Microbiol Biotechnol 27:386–392
    [Google Scholar]
  25. Hutchinson C. R., Fujii I. 1995; Polyketide synthase gene manipulation: a structure–function approach in engineering novel antibiotics. Annu Rev Microbiol 49:201–238
    [Google Scholar]
  26. Kuhstoss S., Rao R. N. 1991; Analysis of the integration function of the streptomycete bacteriophage phi C31. J Mol Biol 222:897–908
    [Google Scholar]
  27. Kuhstoss S., Richardson M. A., Rao R. N. 1989; Site-specific integration in Streptomyces ambofaciens : localization of integration functions in S. ambofaciens plasmid pSAM2. J Bacteriol 171:16–23
    [Google Scholar]
  28. Kuhstoss S., Richardson M. A., Rao R. N. 1991; Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene 97:143–146
    [Google Scholar]
  29. Lomovskaya N. D., Mkrtumian N. M., Gostimskaya N. L., Danilenko V. N. 1972; Characterization of temperate actinophage phiC31 isolated from Streptomyces coelicolor A3(2). J Virol 9:258–262
    [Google Scholar]
  30. Martin C., Mazodier P., Mediola M. V., Gicquel B., Smokvina T., Thompson C. J., Davies J. 1991; Site-specific integration of the Streptomyces plasmid pSAM2 in Mycobacterium smegmatis . Mol Microbiol 5:2499–2502
    [Google Scholar]
  31. Mazodier P., Petter R., Thompson C. 1989; Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171:3583–3585
    [Google Scholar]
  32. Moretti P., Hintermann G., Hutter R. 1985; Isolation and characterization of an extrachromosomal element from Nocardia mediterranei . Plasmid 14:126–133
    [Google Scholar]
  33. Nunes-Duby S. E., Kwon H. J., Tirumalai R. S., Ellenberger T., Landy A. 1998; Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26:391–406
    [Google Scholar]
  34. Omer C. A., Cohen S. N. 1986; Structural analysis of plasmid and chromosomal loci involved in site-specific excision and integration of the SLP1 element of Streptomyces coelicolor . J Bacteriol 166:999–1006
    [Google Scholar]
  35. Omer C. A., Stein D., Cohen S. N. 1988; Site-specific insertion of biologically functional adventitious genes into the Streptomyces lividans chromosome. J Bacteriol 170:2174–2184
    [Google Scholar]
  36. Paget E., Davies J. 1996; Apramycin resistance as a selective marker for gene transfer in mycobacteria. J Bacteriol 178:6357–6360
    [Google Scholar]
  37. Pernodet J. L., Simonet J. M., Guerineau M. 1984; Plasmids in different strains of Streptomyces ambofaciens : free and integrated form of plasmid pSAM2. Mol Gen Genet 198:35–41
    [Google Scholar]
  38. Plohl M., Gamulin V. 1990; Five transfer RNA genes lacking CCA termini are clustered in the chromosome of Streptomyces rimosus . Mol Gen Genet 222:129–134
    [Google Scholar]
  39. Puar M. S., Chan T. M., Hegde V., Patel M., Bartner P., Ng K. J., Pramanik B. N., MacFarlane R. D. 1998; Sch 40832: a novel thiostrepton from Micromonospora carbonacea . J Antibiot 51:221–224
    [Google Scholar]
  40. Rausch H., Vesligaj M., Pocta D., Biukovic G., Pigac J., Cullum J., Schmieger H., Hranueli D. 1993; The temperate phages RP2 and RP3 of Streptomyces rimosus . J Gen Microbiol 139:2517–2524
    [Google Scholar]
  41. Reiter W. D., Palm P., Yeats S. 1989; Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17:1907–1914
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  43. Sedlmeier R., Werner T., Kieser H. M., Hopwood D. A., Schmieger H. 1994; tRNA genes of Streptomyces lividans : new sequences and comparison of structure and organization with those of other bacteria. J Bacteriol 176:5550–5553
    [Google Scholar]
  44. Sezonov G., Blanc V., Bamas-Jacques N., Friedmann A., Pernodet J. L., Guerineau M. 1997; Complete conversion of antibiotic precursor to pristinamycin IIA by overexpression of Streptomyces pristinaespiralis biosynthetic genes. Nat Biotechnol 15:349–353
    [Google Scholar]
  45. Simonet J. M., Boccard F., Pernodet J. L., Gagnat J., Guerineau M. 1987; Excision and integration of a self-transmissible replicon of Streptomyces ambofaciens . Gene 59:137–144
    [Google Scholar]
  46. Smokvina T., Mazodier P., Boccard F., Thompson C. J., Guerineau M. 1990; Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94:53–59
    [Google Scholar]
  47. Sosio M., Madon J., Hutter R. 1989; Excision of pIJ408 from the chromosome of Streptomyces glaucescens and its transfer into Streptomyces lividans . Mol Gen Genet 218:169–176
    [Google Scholar]
  48. Van Mellaert L., Mei L., Lammertyn E., Schacht S., Anné J. 1998; Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector. Microbiology 144:3351–3358
    [Google Scholar]
  49. Vrijbloed J. W., Madon J., Dijkhuizen L. 1994; A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration. J Bacteriol 176:7087–7090
    [Google Scholar]
  50. Weinstein M. J., Wagman G. H., Oden E. M., Luedemann G. M., Sloane P., Murawski A., Marquez J. 1965; Purification and biological studies of everninomicin B. Antimicrob Agents Chemother 5:821–827
    [Google Scholar]
  51. Wolk C. P., Cai Y., Panoff J. 1991; Use of a transposon with luciferase as a reporter to identify environmental responsive genes in a cyanobacterium. Proc Natl Acad Sci U S A 88:5355–5359
    [Google Scholar]
  52. Yang W., Mizuuchi K. 1997; Site-specific recombination in plane view. Structure 5:1401–1406
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26318-0
Loading
/content/journal/micro/10.1099/mic.0.26318-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error