1887

Abstract

var. ATCC 39149 contains a temperate bacteriophage, pMLP1, that is present both as a replicative element and integrated into the chromosome. Sequence analysis of a 4·4 kb I fragment revealed pMLP1 / functions consisting of an integrase, an excisionase and the phage attachment site (). Plasmids pSPRH840 and pSPRH910, containing the pMLP1 / region, were introduced into spp. by conjugation from . Sequence analysis of DNA flanking the integration site confirmed site-specific integration into a tRNA gene in the chromosome. The pMLP1 element and chromosomal bacterial attachment () site contain a 24 bp region of sequence identity located at the 3′ end of the tRNA. Integration of pMLP1-based plasmids in var. caused a loss of the pMLP1 phage. Placement of an additional site into the chromosome allowed integration of pSPRH840 into the alternate site. Plasmids containing the site-specific / functions of pMLP1 can be used to integrate genes into the chromosome.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26318-0
2003-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492443.html?itemId=/content/journal/micro/10.1099/mic.0.26318-0&mimeType=html&fmt=ahah

References

  1. Alexander, D. C. & Jensen, S. E. ( 1998; ). Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein. J Bacteriol 180, 4068–4079.
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Argos, P., Landy, A., Abremski, K. & 9 other authors ( 1986; ). The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J 5, 433–440.
    [Google Scholar]
  4. Baltz, R. H. & Hosted, T. J. ( 1996; ). Molecular genetic methods for improving secondary-metabolite production in actinomycetes. Trends Biotechnol 14, 245–250.[CrossRef]
    [Google Scholar]
  5. Baltz, R. H. & Matsushima, P. ( 1983; ). Advances in protoplast fusion and transformation in Streptomyces. Experientia Suppl 46, 143–148.
    [Google Scholar]
  6. Bar-Nir, D., Cohen, A. & Goedeke, M. E. ( 1992; ). tDNA(ser) sequences are involved in the excision of Streptomyces griseus plasmid pSG1. Gene 122, 71–76.[CrossRef]
    [Google Scholar]
  7. Bibb, M. J., Ward, J. M., Kieser, T., Cohen, S. N. & Hopwood, D. A. ( 1981; ). Excision of chromosomal DNA sequences from Streptomyces coelicolor forms a novel family of plasmids detectable in Streptomyces lividans. Mol Gen Genet 184, 230–240.
    [Google Scholar]
  8. Bierman, M., Logan, R., O'Brien, K., Seno, E. T., Rao, R. N. & Schoner, B. E. ( 1992; ). Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43–49.[CrossRef]
    [Google Scholar]
  9. Boccard, F., Smokvina, T., Pernodet, J. L., Friedmann, A. & Guerineau, M. ( 1989a; ). The integrated conjugative plasmid pSAM2 of Streptomyces ambofaciens is related to temperate bacteriophages. EMBO J 8, 973–980.
    [Google Scholar]
  10. Boccard, F., Smokvina, T., Pernodet, J. L., Friedmann, A. & Guerineau, M. ( 1989b; ). Structural analysis of loci involved in pSAM2 site-specific integration in Streptomyces. Plasmid 21, 59–70.[CrossRef]
    [Google Scholar]
  11. Brown, D. P., Chiang, S. J., Tuan, J. S. & Katz, L. ( 1988; ). Site-specific integration in Saccharopolyspora erythraea and multisite integration in Streptomyces lividans of actinomycete plasmid pSE101. J Bacteriol 170, 2287–2295.
    [Google Scholar]
  12. Brown, D. P., Idler, K. B. & Katz, L. ( 1990; ). Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol 172, 1877–1888.
    [Google Scholar]
  13. Brown, D. P., Idler, K. B., Backer, D. M., Donadio, S. & Katz, L. ( 1994; ). Characterization of the genes and attachment sites for site-specific integration of plasmid pSE101 in Saccharopolyspora erythraea and Streptomyces lividans. Mol Gen Genet 242, 185–193.[CrossRef]
    [Google Scholar]
  14. Cohen, A., Bar-Nir, D., Goedeke, M. E. & Parag, Y. ( 1985; ). The integrated and free states of Streptomyces griseus plasmid pSG1. Plasmid 13, 41–50.[CrossRef]
    [Google Scholar]
  15. Esposito, D. & Scocca, J. J. ( 1997; ). The integrase family of tyrosine recombinases: evolution of a conserved active site domain. Nucleic Acids Res 25, 3605–3614.[CrossRef]
    [Google Scholar]
  16. Flett, F., Mersinias, V. & Smith, C. P. ( 1997; ). High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155, 223–229.[CrossRef]
    [Google Scholar]
  17. Foster, D. R. & Rybak, M. J. ( 1999; ). Pharmacologic and bacteriologic properties of SCH-27899 (Ziracin), an investigational antibiotic from the everninomicin family. Pharmacotherapy 19, 1111–1117.[CrossRef]
    [Google Scholar]
  18. Freitas-Vieira, A., Anes, E. & Moniz-Pereira, J. ( 1998; ). The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. Microbiology 144, 3397–3406.[CrossRef]
    [Google Scholar]
  19. Gabriel, K., Schmid, H., Schmidt, U. & Rausch, H. ( 1995; ). The actinophage RP3 DNA integrates site-specifically into the putative tRNA(Arg) (AGG) gene of Streptomyces rimosus. Nucleic Acids Res 23, 58–63.[CrossRef]
    [Google Scholar]
  20. Garbe, T. R., Barathi, J., Barnini, S., Zhang, Y., Abou-Zeid, C., Tang, D., Mukherjee, R. & Young, D. B. ( 1994; ). Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology 140, 133–138.[CrossRef]
    [Google Scholar]
  21. Hopwood, D. A., Hintermann, G., Kieser, T. & Wright, H. M. ( 1984; ). Integrated DNA sequences in three streptomycetes form related autonomous plasmids after transfer to Streptomyces lividans. Plasmid 11, 1–16.[CrossRef]
    [Google Scholar]
  22. Horan, A. H. & Brodsky, B. ( 1986; ). Micromonospora rosaria sp. nov., the rosaramicin producer. Int J Syst Bacteriol 36, 478–480.[CrossRef]
    [Google Scholar]
  23. Hosted, T. J., Rochefort, D. A. & Benson, D. R. ( 1993; ). Close linkage of genes encoding glutamine synthetases I and II in Frankia alni CpI1. J Bacteriol 175, 3679–3684.
    [Google Scholar]
  24. Hosted, T. J., Wang, T. X., Alexander, D. C. & Horan, A. C. ( 2001; ). Characterization of the biosynthetic gene cluster for the oligosaccharide antibiotic, evernimicin, in Micromonospora carbonacea var. africana ATCC 39149. J Ind Microbiol Biotechnol 27, 386–392.[CrossRef]
    [Google Scholar]
  25. Hutchinson, C. R. & Fujii, I. ( 1995; ). Polyketide synthase gene manipulation: a structure–function approach in engineering novel antibiotics. Annu Rev Microbiol 49, 201–238.[CrossRef]
    [Google Scholar]
  26. Kuhstoss, S. & Rao, R. N. ( 1991; ). Analysis of the integration function of the streptomycete bacteriophage phi C31. J Mol Biol 222, 897–908.[CrossRef]
    [Google Scholar]
  27. Kuhstoss, S., Richardson, M. A. & Rao, R. N. ( 1989; ). Site-specific integration in Streptomyces ambofaciens: localization of integration functions in S. ambofaciens plasmid pSAM2. J Bacteriol 171, 16–23.
    [Google Scholar]
  28. Kuhstoss, S., Richardson, M. A. & Rao, R. N. ( 1991; ). Plasmid cloning vectors that integrate site-specifically in Streptomyces spp. Gene 97, 143–146.[CrossRef]
    [Google Scholar]
  29. Lomovskaya, N. D., Mkrtumian, N. M., Gostimskaya, N. L. & Danilenko, V. N. ( 1972; ). Characterization of temperate actino<@?show=[fo]>phage phiC31 isolated from Streptomyces coelicolor A3(2). J Virol 9, 258–262.
    [Google Scholar]
  30. Martin, C., Mazodier, P., Mediola, M. V., Gicquel, B., Smokvina, T., Thompson, C. J. & Davies, J. ( 1991; ). Site-specific integration of the Streptomyces plasmid pSAM2 in Mycobacterium smegmatis. Mol Microbiol 5, 2499–2502.[CrossRef]
    [Google Scholar]
  31. Mazodier, P., Petter, R. & Thompson, C. ( 1989; ). Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171, 3583–3585.
    [Google Scholar]
  32. Moretti, P., Hintermann, G. & Hutter, R. ( 1985; ). Isolation and characterization of an extrachromosomal element from Nocardia mediterranei. Plasmid 14, 126–133.[CrossRef]
    [Google Scholar]
  33. Nunes-Duby, S. E., Kwon, H. J., Tirumalai, R. S., Ellenberger, T. & Landy, A. ( 1998; ). Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res 26, 391–406.[CrossRef]
    [Google Scholar]
  34. Omer, C. A. & Cohen, S. N. ( 1986; ). Structural analysis of plasmid and chromosomal loci involved in site-specific excision and integration of the SLP1 element of Streptomyces coelicolor. J Bacteriol 166, 999–1006.
    [Google Scholar]
  35. Omer, C. A., Stein, D. & Cohen, S. N. ( 1988; ). Site-specific insertion of biologically functional adventitious genes into the Streptomyces lividans chromosome. J Bacteriol 170, 2174–2184.
    [Google Scholar]
  36. Paget, E. & Davies, J. ( 1996; ). Apramycin resistance as a selective marker for gene transfer in mycobacteria. J Bacteriol 178, 6357–6360.
    [Google Scholar]
  37. Pernodet, J. L., Simonet, J. M. & Guerineau, M. ( 1984; ). Plasmids in different strains of Streptomyces ambofaciens: free and integrated form of plasmid pSAM2. Mol Gen Genet 198, 35–41.[CrossRef]
    [Google Scholar]
  38. Plohl, M. & Gamulin, V. ( 1990; ). Five transfer RNA genes lacking CCA termini are clustered in the chromosome of Streptomyces rimosus. Mol Gen Genet 222, 129–134.
    [Google Scholar]
  39. Puar, M. S., Chan, T. M., Hegde, V., Patel, M., Bartner, P., Ng, K. J., Pramanik, B. N. & MacFarlane, R. D. ( 1998; ). Sch 40832: a novel thiostrepton from Micromonospora carbonacea. J Antibiot 51, 221–224.[CrossRef]
    [Google Scholar]
  40. Rausch, H., Vesligaj, M., Pocta, D., Biukovic, G., Pigac, J., Cullum, J., Schmieger, H. & Hranueli, D. ( 1993; ). The temperate phages RP2 and RP3 of Streptomyces rimosus. J Gen Microbiol 139, 2517–2524.[CrossRef]
    [Google Scholar]
  41. Reiter, W. D., Palm, P. & Yeats, S. ( 1989; ). Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res 17, 1907–1914.[CrossRef]
    [Google Scholar]
  42. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  43. Sedlmeier, R., Werner, T., Kieser, H. M., Hopwood, D. A. & Schmieger, H. ( 1994; ). tRNA genes of Streptomyces lividans: new sequences and comparison of structure and organization with those of other bacteria. J Bacteriol 176, 5550–5553.
    [Google Scholar]
  44. Sezonov, G., Blanc, V., Bamas-Jacques, N., Friedmann, A., Pernodet, J. L. & Guerineau, M. ( 1997; ). Complete conversion of antibiotic precursor to pristinamycin IIA by overexpression of Streptomyces pristinaespiralis biosynthetic genes. Nat Biotechnol 15, 349–353.[CrossRef]
    [Google Scholar]
  45. Simonet, J. M., Boccard, F., Pernodet, J. L., Gagnat, J. & Guerineau, M. ( 1987; ). Excision and integration of a self-transmissible replicon of Streptomyces ambofaciens. Gene 59, 137–144.[CrossRef]
    [Google Scholar]
  46. Smokvina, T., Mazodier, P., Boccard, F., Thompson, C. J. & Guerineau, M. ( 1990; ). Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94, 53–59.[CrossRef]
    [Google Scholar]
  47. Sosio, M., Madon, J. & Hutter, R. ( 1989; ). Excision of pIJ408 from the chromosome of Streptomyces glaucescens and its transfer into Streptomyces lividans. Mol Gen Genet 218, 169–176.[CrossRef]
    [Google Scholar]
  48. Van Mellaert, L., Mei, L., Lammertyn, E., Schacht, S. & Anné, J. ( 1998; ). Site-specific integration of bacteriophage VWB genome into Streptomyces venezuelae and construction of a VWB-based integrative vector. Microbiology 144, 3351–3358.[CrossRef]
    [Google Scholar]
  49. Vrijbloed, J. W., Madon, J. & Dijkhuizen, L. ( 1994; ). A plasmid from the methylotrophic actinomycete Amycolatopsis methanolica capable of site-specific integration. J Bacteriol 176, 7087–7090.
    [Google Scholar]
  50. Weinstein, M. J., Wagman, G. H., Oden, E. M., Luedemann, G. M., Sloane, P., Murawski, A. & Marquez, J. ( 1965; ). Purification and biological studies of everninomicin B. Antimicrob Agents Chemother 5, 821–827.
    [Google Scholar]
  51. Wolk, C. P., Cai, Y. & Panoff, J. ( 1991; ). Use of a transposon with luciferase as a reporter to identify environmental responsive genes in a cyanobacterium. Proc Natl Acad Sci U S A 88, 5355–5359.[CrossRef]
    [Google Scholar]
  52. Yang, W. & Mizuuchi, K. ( 1997; ). Site-specific recombination in plane view. Structure 5, 1401–1406.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26318-0
Loading
/content/journal/micro/10.1099/mic.0.26318-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error