1887

Abstract

The bacterial version of the mammalian signal recognition particle (SRP) is well conserved and essential to all known bacteria. The genes for the SRP components have been cloned and characterized. FtsY resembles the mammalian SRP receptor and the SRP consists of Ffh, a homologue of the mammalian SRP54 protein, and scRNA, which is a small size RNA of 82 nt in length. Co-immunoprecipitation studies confirmed that Ffh and scRNA are probably the only components of the SRP and that pre-agarase can co-immunoprecipitate with Ffh, suggesting that the SRP is involved in targeting secretory proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26313-0
2003-09-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492435.html?itemId=/content/journal/micro/10.1099/mic.0.26313-0&mimeType=html&fmt=ahah

References

  1. Barthelemy I., Salas M., Mellado R. P.. 1986; In vivo transcription of bacteriophage ϕ 29 DNA: transcription initiation sites. J Virol60:874–879
    [Google Scholar]
  2. Batey R. T., Rambo R. P., Lucast L., Rha B., Doudna J. A.. 2000; Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science287:1232–1239
    [Google Scholar]
  3. Beck K., Wu L. F., Brunner J., Muller M.. 2000; Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J19:134–143
    [Google Scholar]
  4. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  5. Bui N., Strub K.. 1999; New insights into signal recognition and elongation arrest activities of the signal recognition particle. Biol Chem380:135–145
    [Google Scholar]
  6. Bunai K., Takamatsu H., Horinaka T., Oguro A., Nakamura K., Yamane K.. 1996; Bacillus subtilis Ffh, a homologue of mammalian SRP54, can intrinsically bind to the precursors of secretory proteins. Biochem Biophys Res Commun227:762–767
    [Google Scholar]
  7. Chater K. F.. 1998; Taking a genetic scalpel to the Streptomyces colony. Microbiology144:1465–1478
    [Google Scholar]
  8. Christie G. E., Calendar R.. 1983; Bacteriophage P2 late promoters. Transcription initiation sites form two late mRNAs. J Mol Biol167:773–790
    [Google Scholar]
  9. Dunbar B. S., Schwoebel E. D.. 1990; Preparation of polyclonal antibodies. Methods Enzymol182:663–670
    [Google Scholar]
  10. Gilbert M., Morosoli R., Shareck F., Kluepfel D.. 1995; Production and secretion of proteins by streptomycetes. Crit Rev Biotechnol15:13–39
    [Google Scholar]
  11. Harwood C. R., Cutting S. M.. 1990; Molecular Biological Methods for Bacillus Chichester, UK: Wiley;
  12. Herskovits A. A., Bochkareva E., Bibi E.. 2000; New prospects in studying the bacterial signal recognition particle pathway. Mol Microbiol38:927–939
    [Google Scholar]
  13. Hopwood D. A., Bibb M. J., Chater K. F., Kieser H. M., Lydiate D. J., Smith C. P., Ward J. M., Schrempf H.. 1985; Genetic Manipulation of Streptomyces . A Laboratory Manual Norwich, UK: John Innes Foundation;
    [Google Scholar]
  14. Kedzierski W., Porter J. C.. 1991; A novel non-enzymatic procedure for removing DNA template from RNA transcription mixtures. Biotechniques10:210–214
    [Google Scholar]
  15. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  16. Mellado R. P., Barthelemy I., Salas M.. 1986; In vivo transcription of bacteriophage ϕ 29 DNA early and late promoter sequences. J Mol Biol191:191–197
    [Google Scholar]
  17. Murray N. E.. 1983; Phage lambda and molecular cloning. In Lambda II pp398–432 Edited by Hendrix R. W., Roberts J. W., Stahl F. W., Weisberg R. A. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  18. Nakamura K., Yahagi S., Yamazaki T., Yamane K.. 1999; Bacillus subtilis histone-like protein, HBsu, is an integral component of a SRP-like particle that can bind the Alu domain of small cytoplasmic RNA. J Biol Chem274:13569–13576
    [Google Scholar]
  19. Norrander J., Kempe T., Messing J.. 1983; Construction of improved M13 vectors using oligodeoxynucleotide-directed mutagenesis. Gene26:101–106
    [Google Scholar]
  20. Oguro A., Kakeshita H., Takamatsu H., Nakamura K., Yamane K.. 1996; The effect of Srb, a homologue of the mammalian SRP receptor alpha-subunit, on Bacillus subtilis growth and protein translocation. Gene172:17–24
    [Google Scholar]
  21. Palacín A., Parro V., Geukens N., Anné J., Mellado R. P.. 2002; SipY is the Streptomyces lividans type I signal peptidase exerting a major effect on protein secretion. J Bacteriol184:4875–4880
    [Google Scholar]
  22. Parro V., Mellado R. P.. 1994; Effect of glucose on agarase overproduction by Streptomyces . Gene145:49–55
    [Google Scholar]
  23. Parro V., Hopwood D. A., Malpartida F., Mellado R. P.. 1991; Transcription of genes involved in the earliest steps of actinorhodin biosynthesis in Streptomyces coelicolor . Nucleic Acids Res19:2623–2627
    [Google Scholar]
  24. Parro V., Mellado R. P., Harwood C. R.. 1998; Effect of phosphate limitation on agarase production by Streptomyces lividans TK21. FEMS Microbiol Lett158:107–113
    [Google Scholar]
  25. Parro V., Schacht S., Anné J., Mellado R. P.. 1999; Four genes encoding different type I signal peptidases are organized in a cluster in Streptomyces lividans TK21. Microbiology145:2255–2263
    [Google Scholar]
  26. Powers T., Walter P.. 1997; Co-translational protein targeting catalyzed by the Escherichia coli signal recognition particle and its receptor. EMBO J16:4880–4886
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  28. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A74:5463–5467
    [Google Scholar]
  29. Sprengart M. L., Fuchs E., Porter A. G.. 1996; The downstream box: an efficient and independent translation initiation signal in Escherichia coli . EMBO J15:665–674
    [Google Scholar]
  30. Timmons T. M., Dunbar B. S.. 1990; Protein blotting and immunodetection. Methods Enzymol182:679–688
    [Google Scholar]
  31. Tjalsma H., Bolhuis A., van Roosmalen M. L.. 7 other authors 1998; Functional analysis of the secretory precursor processing machinery of Bacillus subtilis : identification of a eubacterial homolog of archaeal and eukaryotic signal peptidases. Genes Dev12:2318–2331
    [Google Scholar]
  32. Van Mellaert L., Anné J.. 1994; Protein secretion in Gram-positive bacteria with high GC-content. Recent Res Dev Microbiol3:324–340
    [Google Scholar]
  33. Villarejo M. R., Zabin I.. 1974; β -Galactosidase from termination and deletion mutant strains. J Bacteriol120:466–474
    [Google Scholar]
  34. Walter P., Johnson A. E.. 1994; Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol10:87–119
    [Google Scholar]
  35. Wolin S. L.. 1994; From the elephant to E. coli : SRP-dependent protein targeting. Cell77:787–790
    [Google Scholar]
  36. Wu C. J., Janssen G. R.. 1996; Translation of vph mRNA in Streptomyces lividans and Escherichia coli after removal of 5′ untranslated leader. Mol Microbiol22:339–355
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26313-0
Loading
/content/journal/micro/10.1099/mic.0.26313-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error