1887

Abstract

DNA ligase IV is thought to be involved in DNA double-strand break repair and DNA non-homologous end-joining pathways, but these mechanisms are still unclear. To investigate the roles of DNA ligase IV from a biologically functional viewpoint, the authors studied its relationship to meiosis in a basidiomycete, , which shows a highly synchronous meiotic cell cycle. The cDNA homologue of DNA ligase IV () was successfully cloned. The 3·2 kb clone including the ORF encoded a predicted product of 1025 amino acid residues with a molecular mass of 117 kDa. A specific inserted sequence composed of 95 amino acids rich in aspartic acid and glutamic acid could be detected between tandem BRCT domains. The inserted sequence had no sequence identity with other eukaryotic counterparts of DNA ligase IV or with another aspartic acid and glutamic acid rich sequence inserted in proliferating cell nuclear antigen (CcPCNA), although the length and the percentages of aspartic and glutamic acids were similar. In addition, the recombinant CcLIG4 protein not only showed ATP-dependent ligase activity, but also used (dT)/poly(dA) and (dT)/poly(rA) as substrates, and had double-strand ligation activity, like human DNA ligase IV. Northern hybridization analysis and hybridization indicated that was expressed not only at the pre-meiotic S phase but also at meiotic prophase I. Intense signals were observed in leptotene and zygotene. Based on these observations, the possible role(s) of DNA ligase IV during meiosis are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26311-0
2003-08-01
2024-11-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492119.html?itemId=/content/journal/micro/10.1099/mic.0.26311-0&mimeType=html&fmt=ahah

References

  1. Allers T., Lichten M. 2001a; Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol Cell 8:225–231
    [Google Scholar]
  2. Allers T., Lichten M. 2001b; Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106:47–57
    [Google Scholar]
  3. Barnes D. E., Stamp G., Rosewell I., Denzel A., Lindahl T. 1998; Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr Biol 8:1395–1398
    [Google Scholar]
  4. Brown A. J., Casselton L. A. 2001; Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet 17:393–400
    [Google Scholar]
  5. Bryans M., Valenzano M. C., Stamato T. D. 1999; Absence of DNA ligase IV protein in XR-1 cells: evidence for stabilization by XRCC4. Mutat Res 433:53–58
    [Google Scholar]
  6. Casselton L. A. 2002; Mate recognition in fungi. Heredity 88:142–147
    [Google Scholar]
  7. Casselton L. A., Olesnicky N. S. 1998; Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 62:55–70
    [Google Scholar]
  8. Celerin M., Merino S. T., Stone J. E., Menzie A. M., Zolan M. E. 2000; Multiple roles of Spo11 in meiotic chromosome behavior. EMBO J 19:2739–2750
    [Google Scholar]
  9. Chen J., Tomkinson A. E., Ramos W., Mackey Z. B., Danehower S., Walter C. A., Schultz R. A., Besterman J. M., Husain I. 1995; Mammalian DNA ligase III: molecular cloning, chromosomal localization, and expression in spermatocytes undergoing meiotic recombination. Mol Cell Biol 15:5412–5422
    [Google Scholar]
  10. Critchlow S. E., Bowater R. P., Jackson S. P. 1997; Mammalian DNA double-strand break repair protein XRCC4 interacts with DNA ligase IV. Curr Biol 7:588–598
    [Google Scholar]
  11. Featherstone C., Jackson S. P. 1999; DNA double-strand break repair. Curr Biol 9:R759–R761
    [Google Scholar]
  12. Frank K. M., Sekiguchi J. M., Seidl K. J., Swat W., Rathbun G. A., Cheng H. L., Davidson L., Kangaloo L., Alt F. W. 1998; Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396:173–177
    [Google Scholar]
  13. Gerecke E. E., Zolan M. E. 2000; An mre11 mutant of Coprinus cinereus has defects in meiotic chromosome pairing, condensation and synapsis. Genetics 154:1125–1139
    [Google Scholar]
  14. Goedecke W., Eijpe M., Offenberg H. H., van Aalderen M., Heyting C. 1999; Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 23:194–198
    [Google Scholar]
  15. Grawunder U., Wilm M., Wu X., Kulesza P., Wilson T. E., Mann M., Lieber M. R. 1997; Activity of DNA ligase IV stimulated by complex formation with XRCC4 protein in mammalian cells. Nature 388:492–495
    [Google Scholar]
  16. Grawunder U., Zimmer D., Leiber M. R. 1998; DNA ligase IV binds to XRCC4 via a motif located between rather than within its BRCT domains. Curr Biol 8:873–876
    [Google Scholar]
  17. Guex N., Peitsch M. C. 1997; SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723
    [Google Scholar]
  18. Hamada F., Namekawa S., Kasai N., Nara T., Kimura S., Sugawara F., Sakaguchi K. 2002; Proliferating cell nuclear antigen from a basidiomycete, Coprinus cinereus . Alternative truncation and expression in meiosis. Eur J Biochem 269:164–174
    [Google Scholar]
  19. Herrmann G., Lindahl T., Schar P. 1998; Saccharomyces cerevisiae LIF1: a function involved in DNA double-strand break repair related to mammalian XRCC4. EMBO J 17:4188–4198
    [Google Scholar]
  20. Hunter N., Kleckner N. 2001; The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106:59–70
    [Google Scholar]
  21. Jeggo P. A. 1998; DNA breakage and repair. Adv Genet 38:185–218
    [Google Scholar]
  22. Kamada T. 2002; Molecular genetics of sexual development in the mushroom Coprinus cinereus. Bioessays 24:449–459
    [Google Scholar]
  23. Keeney S. 2001; Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1–53
    [Google Scholar]
  24. Krishnan V. V., Thornton K. H., Thelen M. P., Cosman M. 2001; Solution structure and backbone dynamics of the human DNA ligase IIIalpha BRCT domain. Biochemistry 40:13158–13166
    [Google Scholar]
  25. Kues U. 2000; Life history and developmental processes in the basidiomycete Coprinus cinereus . Microbiol Mol Biol Rev 64:316–353
    [Google Scholar]
  26. Li L., Gerecke E. E., Zolan M. E. 1999; Homolog pairing and meiotic progression in Coprinus cinereus . Chromosoma 108:384–392
    [Google Scholar]
  27. Lu B. C., Jeng D. Y. 1975; Meiosis in Coprinus . VII. The prekaryogamy S-phase and the postkaryogamy DNA replication in C. lagopus . J Cell Sci 17:461–470
    [Google Scholar]
  28. Mahadevaiah S. K., Turner J. M., Baudat F. 7 other authors 2001; Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276
    [Google Scholar]
  29. Martin I. V., MacNeill S. A. 2002; ATP-dependent DNA ligases. Genome Biol 3: REVIEWS3005 ()
    [Google Scholar]
  30. Martini E., Keeney S. 2002; Sex and the single (double-strand) break. Mol Cell 9:700–702
    [Google Scholar]
  31. Matsuda S., Sakaguchi K., Tsukada K., Teraoka H. 1996; Characterization of DNA ligase from the fungus Coprinus cinereus . Eur J Biochem 237:691–697
    [Google Scholar]
  32. Merino S. T., Cummings W. J., Acharya S. N., Zolan M. E. 2000; Replication-dependent early meiotic requirement for Spo11 and Rad50. Proc Natl Acad Sci U S A 97:10477–10482
    [Google Scholar]
  33. Modesti M., Hesse J. E., Gellert M. 1999; DNA binding of Xrcc4 protein is associated with V(D)J recombination but not with stimulation of DNA ligase IV activity. EMBO J 18:2008–2018
    [Google Scholar]
  34. Namekawa S., Hamada F., Ishii S. 9 other authors 2003; Coprinus cinereus DNA ligase I during meiotic development. Biochim Biophys Acta 162747–55
    [Google Scholar]
  35. Nara T., Saka T., Sawado T., Takase H., Ito Y., Hotta Y., Sakaguchi K. 1999; Isolation of a LIM15/DMC1 homolog from the basidiomycete Coprinus cinereus and its expression in relation to meiotic chromosome pairing. Mol Gen Genet 262:781–789
    [Google Scholar]
  36. Paques F., Haber J. E. 1999; Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae . Microbiol Mol Biol Rev 63:349–404
    [Google Scholar]
  37. Peitsch M. C. 1996; ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans 24:274–279
    [Google Scholar]
  38. Peitsch M. C., Wells T. N., Stampf D. R., Sussman J. L. 1995; The Swiss-3DImage collection and PDB-Browser on the World-Wide Web. Trends Biochem Sci 20:82–84
    [Google Scholar]
  39. Pukkila P. J., Yashar B. M., Binninger D. M. 1984; Analysis of meiotic development in Coprinus cinereus . Symp Soc Exp Biol 38:177–194
    [Google Scholar]
  40. Raju N. B., Lu B. C. 1970; Meiosis in Coprinus . III. Timing of meiotic events in C. lagopus ( sensu Buller). Can J Bot 48:2183–2186
    [Google Scholar]
  41. Ramesh M. A., Zolan M. E. 1995; Chromosome dynamics in rad12 mutants of Coprinus cinereus . Chromosoma 104:189–202
    [Google Scholar]
  42. Riballo E., Critchlow S. E., Teo S. H. 10 other authors 1999; Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr Biol 9:699–702
    [Google Scholar]
  43. Robins P., Lindahl T. 1996; DNA ligase IV from HeLa cell nuclei. J Biol Chem 271:24257–24261
    [Google Scholar]
  44. Roeder G. S. 1997; Meiotic chromosomes: it takes two to tango. Genes Dev 11:2600–2621
    [Google Scholar]
  45. Sakaguchi K., Lu B. C. 1982; Meiosis in Coprinus : characterization and activities of two forms of DNA polymerase during meiotic stages. Mol Cell Biol 2:752–757
    [Google Scholar]
  46. Sawado T., Sakaguchi K. 1997; A DNA polymerase alpha catalytic subunit is purified independently from the tissues at meiotic prometaphase I of a basidiomycete, Coprinus cinereus . Biochem Biophys Res Commun 232:454–460
    [Google Scholar]
  47. Schar P., Herrmann G., Daly G., Lindahl T. 1997; A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks. Genes Dev 11:1912–1924
    [Google Scholar]
  48. Shuman S., Liu Y., Schwer B. 1994; Covalent catalysis in nucleotidyl transfer reactions: essential motifs in Saccharomyces cerevisiae RNA capping enzyme are conserved in Schizosaccharomyces pombe and viral capping enzymes and among polynucleotide ligases. Proc Natl Acad Sci U S A 91:12046–12050
    [Google Scholar]
  49. Subramanya H. S., Doherty A. J., Ashford S. R., Wigley D. B. 1996; Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell 85:607–615
    [Google Scholar]
  50. Teraoka H., Minami H., Iijima S., Tsukada K., Koiwai O., Date T. 1993; Expression of active human DNA ligase I in Escherichia coli cells that harbor a full-length DNA ligase I cDNA construct. J Biol Chem 268:24156–24162
    [Google Scholar]
  51. Timson D. J., Singleton M. R., Wigley D. B. 2000; DNA ligases in the repair and replication of DNA. Mutat Res 460:301–318
    [Google Scholar]
  52. Tomkinson A. E., Mackey Z. B. 1998; Structure and function of mammalian DNA ligases. Mutat Res 407:1–9
    [Google Scholar]
  53. Tomkinson A. E., Roberts E., Daly G., Totty N. F., Lindahl T. 1991; Three distinct DNA ligases in mammalian cells. J Biol Chem 266:21728–21735
    [Google Scholar]
  54. Villeneuve A. M., Hillers K. J. 2001; Whence meiosis?. Cell 106:647–650
    [Google Scholar]
  55. West C. E., Waterworth W. M., Jiang Q., Bray C. M. 2000; Arabidopsis DNA ligase IV is induced by gamma-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4. Plant J 24:67–78
    [Google Scholar]
  56. Zickler D., Kleckner N. 1999; Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.26311-0
Loading
/content/journal/micro/10.1099/mic.0.26311-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error