1887

Abstract

Production of curli, extracellular structures important for biofilm formation, is positively regulated by OmpR, which constitutes with the EnvZ protein an osmolarity-sensing two-component regulatory system. The expression of curli is cryptic in most laboratory strains such as MG1655, due to the lack of expression. The gene encodes a transcription activator of the curli-subunit-encoding operon. The up-mutation can restore expression, resulting in curli production and increased biofilm formation. In this report, it is shown that -dependent expression, in addition to activation during stationary phase of growth, stimulates expression of the gene and negatively regulates at least two other genes, and . The promoter regions of these four genes share a conserved 11 bp sequence (CGGGKGAKNKA), necessary for and regulation by CsgD. While at both the and promoters the sequence is located upstream of the promoter elements, in both and it overlaps either the putative −10 sequence or the transcription start point, suggesting that CsgD can function as both an activator and a repressor. Adhesion experiments show that -independent expression of both and from a multicopy plasmid negatively affects biofilm formation, which, in contrast, is stimulated by expression. Thus it is proposed that CsgD stimulates biofilm formation in by contemporary activation of adhesion positive determinants (the curli-encoding operons and the product of the gene) and repression of negative effectors such as and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26306-0
2003-10-01
2020-05-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492847.html?itemId=/content/journal/micro/10.1099/mic.0.26306-0&mimeType=html&fmt=ahah

References

  1. Arnqvist A., Olsen A., Normark S.. 1994; Sigma S-dependent growth-phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by sigma 70 in the absence of the nucleoid-associated protein H-NS. Mol Microbiol13:1021–1032
    [Google Scholar]
  2. Busby S., Ebright R. H.. 1994; Promoter structure, promoter recognition and transcription activation in prokaryotes. Cell79:743–746
    [Google Scholar]
  3. Chapman M. R., Robinson L. S., Pinkner J. S., Roth R., Heuser J., Hammar M., Normark S., Hultgren S. J.. 2002; Role of Escherichia coli curli operons in directing amyloid fiber formation. Science295:851–855
    [Google Scholar]
  4. Chirwa N. T., Herrington M. B.. 2003; CsgD, a regulator of curli and cellulose synthesis, also regulates serine hydroxymethyltransferase synthesis in Escherichia coli K-12. Microbiology149:525–535
    [Google Scholar]
  5. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J.. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol41:435–464
    [Google Scholar]
  6. Costerton J. W., Ellis B., Lam K., Johnson F., Khoury A. E.. 1994; Mechanism of electrical enhancement of efficacy of antibiotics in killing biofilm bacteria. Antimicrob Agents Chemother38:2803–2809
    [Google Scholar]
  7. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M.. 1995; Microbial biofilms. Annu Rev Microbiol49:711–745
    [Google Scholar]
  8. Davies D. G., Geesey G. G.. 1995; Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol61:860–867
    [Google Scholar]
  9. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P.. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science280:295–298
    [Google Scholar]
  10. Dorel C., Vidal O., Prigent-Combaret C., Vallet I., Lejeune P.. 1999; Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett178:169–175
    [Google Scholar]
  11. Finlay B. B., Falkow S.. 1997; Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev61:136–169
    [Google Scholar]
  12. Fuqua W. C., Winans S. C., Greenberg E. P.. 1994; Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. Annu Rev Microbiol50:727–751
    [Google Scholar]
  13. Hall S. D., Kane M. F., Kolodner M. D.. 1993; Identification and characterization of the Escherichia coli RecT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J Bacteriol175:277–287
    [Google Scholar]
  14. Hammar M., Arnqvist A., Bian Z., Olsen A., Normark S.. 1995; Expression of two csg operons is required for production of fibronectin- and congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol18:661–670
    [Google Scholar]
  15. Henrich B., Monnerjahn U., Plapp R.. 1990; Peptidase D gene ( pepD ) of Escherichia coli K-12: nucleotide sequence, transcript mapping, and comparison with other peptidase genes. J Bacteriol172:4641–4651
    [Google Scholar]
  16. Henrich B., Backes H., Klein J. R., Plapp R.. 1992; The promoter region of the Escherichia coli pepD gene: deletion analysis and control by phosphate concentration. Mol Gen Genet232:117–125
    [Google Scholar]
  17. Hoyle B. D., Costerton W. J.. 1991; Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res37:91–105
    [Google Scholar]
  18. Jaspers M. C., Suske W. A., Schmid A., Goslings D. A., Kohler H. P., van der Meer J. R.. 2000; HbpR, a new member of the XylR/DmpR subclass within the NtrC family of bacterial transcriptional activators, regulates expression of 2-hydroxybiphenyl metabolism in Pseudomonas azelaica HBP1. J Bacteriol182:405–417
    [Google Scholar]
  19. Jucker B. A., Harms H., Zehnder A. J. B.. 1998; Polymer interaction between five gram-negative bacteria and glass investigated using LPS micelles and vesicles as model system. Colloid Surf B Biointerfaces11:33–45
    [Google Scholar]
  20. Klein J., Henrich B., Plapp R.. 1986; Cloning and expression of the pepD gene of Escherichia coli . J Gen Microbiol132:2337–2342
    [Google Scholar]
  21. Landini P., Zehnder A. J.. 2002; The global regulatory hns gene negatively affects adhesion to solid surfaces by anaerobically grown Escherichia coli by modulating the expression of lipopolysaccharide and flagellar genes. J Bacteriol184:1522–1529
    [Google Scholar]
  22. Lawrence J. R., Korber D. R., Hoyle B. D., Costerton J. W., Caldwell D. E.. 1991; Optical sectioning of microbial biofilms. J Bacteriol173:6558–6567
    [Google Scholar]
  23. Lloyd G. S., Landini P., Busby S. J. W.. 2001; Activation and repression of transcription initiation in bacteria. Essays Biochem37:17–31
    [Google Scholar]
  24. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Miller M. B., Bassler B. L.. 2001; Quorum sensing in bacteria. Annu Rev Microbiol55:165–199
    [Google Scholar]
  26. Olsen A., Jonsson A., Normark S.. 1989; Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli . Nature338:652–655
    [Google Scholar]
  27. Pratt L. A., Kolter R.. 1998; Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol30:285–293
    [Google Scholar]
  28. Prigent-Combaret C., Vidal O., Dorel C., Lejeune P.. 1999; Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli . J Bacteriol181:5993–6002
    [Google Scholar]
  29. Prigent-Combaret C., Prensier G., Le Thi T. T., Vidal O., Lejeune P., Dorel C.. 2000; Developmental pathway for biofilm formation in curli producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol2:450–464
    [Google Scholar]
  30. Prigent-Combaret C., Brombacher E., Vidal O., Lejeune P., Ambert A., Landini P., Dorel C.. 2001; A complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgB gene. J Bacteriol183:7213–7223
    [Google Scholar]
  31. Romling U., Bian Z., Hammar M., Sierralta W. D., Normark S.. 1998a; Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol180:722–731
    [Google Scholar]
  32. Romling U., Sierralta W. D., Eriksson K., Normark S.. 1998b; Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol28:249–264
    [Google Scholar]
  33. Romling U., Rohde M., Olsen A., Normark S., Reinkoster J.. 2000; AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol36:10–23
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Simoni S., Harms H., Bosma T. N. P., Zehnder A. J. B.. 1998; Population heterogeneity affects transport of bacteria through sand column at low flow rates. Environ Sci Technol32:2100–2105
    [Google Scholar]
  36. Sperandio V., Torres A. G., Giron J. A., Kaper J. B.. 2001; Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157 : H7. J Bacteriol183:5187–5197
    [Google Scholar]
  37. Stewart P. S.. 2001; Multicellular resistance: biofilms. Trends Microbiol9:34–39
    [Google Scholar]
  38. Swift S., Throup J., Bycroft B., Williams P., Stewart G.. 1998; Quorum sensing: bacterial cell-cell signalling from bioluminescence to pathogenicity. In Molecular Microbiology pp 185–208 Edited by Busby S. J. W., Thomas C. M., Brown N. L. Berlin: Springer;
    [Google Scholar]
  39. Tao H., Bausch C., Richmond C., Blattner F. R., Conway T.. 1999; Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J Bacteriol181:6425–6440
    [Google Scholar]
  40. Uhlich G. A., Keen J. E., Elder R. O.. 2001; Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157 : H7. Appl Environ Microbiol67:2367–2370
    [Google Scholar]
  41. Vidal O., Longin R., Prigent-Combaret C., Dorel C., Hooreman M., Lejeune P.. 1998; Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol180:2442–2449
    [Google Scholar]
  42. Weiner R., Langille S., Quintero E.. 1995; Structure, function and immunochemistry of bacterial exopolysaccharides. J Ind Microbiol15:339–346
    [Google Scholar]
  43. Williams V., Fletcher M.. 1996; Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Appl Environ Microbiol62:100–104
    [Google Scholar]
  44. Zogaj X., Nimtz M., Rohde M., Bokranz W., Romling U.. 2001; The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol39:1452–1463
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26306-0
Loading
/content/journal/micro/10.1099/mic.0.26306-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error