Aer and Tsr guide in spatial gradients of oxidizable substrates Free

Abstract

The Aer and Tsr chemoreceptors in govern tactic responses to oxygen and redox potential that are parts of an overall behaviour known as energy taxis. They are also proposed to mediate responses to rapidly utilized carbon sources, glycerol and succinate, via the energy taxis mechanism. In this study, the Aer and Tsr proteins were individually expressed in an ‘all-transducer-knockout’ strain of and taxis was analysed in gradients of various oxidizable carbon sources. In addition to the known response to glycerol and succinate, it was found that Aer directed taxis towards ribose, galactose, maltose, malate, proline and alanine as well as the phosphotransferase system (PTS) carbohydrates glucose, mannitol, mannose, sorbitol and fructose, but not to aspartate, glutamate, glycine and arabinose. Tsr directed taxis towards sugars (including those transported by the PTS), but not to organic acids or amino acids. When a mutated Aer protein unable to bind the FAD cofactor was expressed in the receptor-less strain, chemotaxis was not restored to any substrate. Aer appears to mediate responses to rapidly oxidizable substrates, whether or not they are effective growth substrates, whereas Tsr appears to mediate taxis to substrates that support maximal growth, whether or not they are rapidly oxidizable. This correlates with the hypothesis that Aer and Tsr sense redox and proton motive force, respectively. Taken together, the results demonstrate that Aer and Tsr mediate responses to a broad range of chemicals and their attractant repertoires overlap with those of specialized chemoreceptors, namely Trg (ribose, galactose) and Tar (maltose).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26304-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492661.html?itemId=/content/journal/micro/10.1099/mic.0.26304-0&mimeType=html&fmt=ahah

References

  1. Alexandre G., Zhulin I. B. 2001; More than one way to sense chemicals. J Bacteriol 183:4681–4686
    [Google Scholar]
  2. Alexandre G., Greer S. E., Zhulin I. B. 2000; Energy taxis is the dominant behavior in Azospirillum brasilense . J Bacteriol 182:6042–6048
    [Google Scholar]
  3. Bespalov V. A., Zhulin I. B., Taylor B. L. 1996; Behavioral responses of Escherichia coli to changes in redox potential. Proc Natl Acad Sci U S A 93:10084–10089
    [Google Scholar]
  4. Bibikov S. I., Biran R., Rudd K. E., Parkinson J. S. 1997; A signal transducer for aerotaxis in Escherichia coli . J Bacteriol 179:4075–4079
    [Google Scholar]
  5. Bibikov S. I., Barnes L. A., Gitin Y., Parkinson J. S. 2000; Domain organization and flavin adenine dinucleotide-binding determinants in the aerotaxis signal transducer Aer of Escherichia coli . Proc Natl Acad Sci U S A 97:5830–5835
    [Google Scholar]
  6. Falke J. J., Hazelbauer G. L. 2001; Transmembrane signaling in bacterial chemoreceptors. Trends Biochem Sci 26:257–265
    [Google Scholar]
  7. Falke J. J., Bass R. B., Butler S. L., Chervitz S. A., Danielson M. A. 1997; The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol 13:457–512
    [Google Scholar]
  8. Grishanin R. N., Chalmina I. I., Zhulin I. B. 1991; Behaviour of Azospirillum brasilense in a spatial gradient of oxygen and in a ‘redox’ gradient of an artificial electron acceptor. J Gen Microbiol 137:2781–2785
    [Google Scholar]
  9. Levit M. N., Stock J. B. 1999; pH sensing in bacterial chemotaxis. Novartis Found Symp 221:38–50
    [Google Scholar]
  10. Lux R., Munasinghe V. R., Castellano F., Lengeler J. W., Corrie J. E., Khan S. 1999; Elucidation of a PTS-carbohydrate chemotactic signal pathway in Escherichia coli using a time-resolved behavioral assay. Mol Biol Cell 10:1133–1146
    [Google Scholar]
  11. Mesibov R., Ordal G. W., Adler J. 1973; The range of attractant concentrations for bacterial chemotaxis and the threshold and size of response over this range. Weber law and related phenomena. J Gen Physiol 62:203–223
    [Google Scholar]
  12. Parkinson J. S. 1993; Signal transduction schemes of bacteria. Cell 73:857–871
    [Google Scholar]
  13. Parkinson J. S., Houts S. E. 1982; Isolation and behavior of Escherichia coli deletion mutants lacking chemotaxis functions. J Bacteriol 151:106–113
    [Google Scholar]
  14. Rebbapragada A., Johnson M. S., Harding G. P., Zuccarelli A. J., Fletcher H. M., Zhulin I. B., Taylor B. L. 1997; The Aer protein and the serine chemoreceptor Tsr independently sense intracellular energy levels and transduce oxygen, redox, and energy signals for Escherichia coli behavior. Proc Natl Acad Sci U S A 94:10541–10546
    [Google Scholar]
  15. Repik A., Rebbapragada A., Johnson M. S., Haznedar J. O., Zhulin I. B., Taylor B. L. 2000; PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli . Mol Microbiol 36:806–816
    [Google Scholar]
  16. Schuenemann T. A., Delgado-Nixon V. M., Dalbey R. E. 1999; Direct evidence that the proton motive force inhibits membrane translocation of positively charged residues within membrane proteins. J Biol Chem 274:6855–6864
    [Google Scholar]
  17. Shioi J., Tribhuwan R. C., Berg S. T., Taylor B. L. 1988; Signal transduction in chemotaxis to oxygen in Escherichia coli and Salmonella typhimurium . J Bacteriol 170:5507–5511
    [Google Scholar]
  18. Spudich J. L., Koshland D. E. J. 1975; Quantitation of the sensory response in bacterial chemotaxis. Proc Natl Acad Sci U S A 72:710–713
    [Google Scholar]
  19. Taylor B. L., Zhulin I. B. 1998; In search of higher energy: metabolism-dependent behaviour in bacteria. Mol Microbiol 28:683–690
    [Google Scholar]
  20. Taylor B. L., Zhulin I. B. 1999; PAS domains: internal sensors of oxygen, redox potential and light. Microbiol Mol Biol Rev 63:479–506
    [Google Scholar]
  21. Taylor B. L., Miller J. B., Warrick H. M., Koshland D. E. Jr 1979; Electron acceptor taxis and blue light effect on bacterial chemotaxis. J Bacteriol 140:567–573
    [Google Scholar]
  22. Taylor B. L., Zhulin I. B., Johnson M. S. 1999; Aerotaxis and other energy-sensing behavior in bacteria. Annu Rev Microbiol 53:103–128
    [Google Scholar]
  23. Umemura T., Matsumoto Y., Ohnishi K., Homma M., Kawagishi I. 2002; Sensing of cytoplasmic pH by bacterial chemoreceptors involves the linker region that connects the membrane-spanning and the signal-modulating helices. J Biol Chem 277:1593–1598
    [Google Scholar]
  24. Yamamoto K., Macnab R. M., Imae Y. 1990; Repellent response functions of the Trg and Tap chemoreceptors of Escherichia coli . J Bacteriol 172:383–388
    [Google Scholar]
  25. Yu H. S., Saw J. H., Hou S. 7 other authors 2002; Aerotactic responses in bacteria to photoreleased oxygen. FEMS Microbiol Lett 217:237–242
    [Google Scholar]
  26. Zhulin I. B., Bespalov V. A., Johnson M. S., Taylor B. L. 1996; Oxygen taxis and proton motive force in Azospirillum brasilense . J Bacteriol 178:5199–5204
    [Google Scholar]
  27. Zhulin I. B., Rowsell E. H., Johnson M. S., Taylor B. L. 1997; Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium . J Bacteriol 179:3196–3201
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26304-0
Loading
/content/journal/micro/10.1099/mic.0.26304-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed