1887

Abstract

A bacterial consortium comprising four different species was isolated from an Indonesian agricultural soil using a mixture of aniline and 4-chloroaniline (4CA) as principal carbon sources. The four species were identified as SB1, SB2, SB4 and SB5. Growth studies on aniline and 4CA as single and mixed substrates demonstrated that the bacteria preferred to grow on and utilize aniline rather than 4CA, although both compounds were eventually depleted from the culture supernatant. However, despite 100 % disappearance of the parent substrates, the degradation of 4CA was always characterized by incomplete dechlorination and 4-chlorocatechol accumulation. This result suggests that further degradation of 4-chlorocatechol may be the rate-limiting step in the metabolism of 4CA by the bacterial consortium. HPLC-UV analysis showed that 4-chlorocatechol was further degraded via an -cleavage pathway by the bacterial consortium. This hypothesis was supported by the results from enzyme assays of the crude cell extract of the consortium revealing catechol 1,2-dioxygenase activity which converted catechol and 4-chlorocatechol to ,-muconic acid and 3-chloro-,-muconic acid respectively. However, the enzyme had a much higher conversion rate for catechol [156 U (g protein)] than for 4-chlorocatechol [17·2 U (g protein)], indicating preference for non-chlorinated substrates. Members of the bacterial consortium were also characterized individually. All isolates were able to assimilate aniline. SB4 was able to grow on 4CA solely, while SB5 was able to grow on 4-chlorocatechol. These results suggest that the degradation of 4CA in the presence of aniline by the bacterial consortium was a result of interspecies interactions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26303-0
2003-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493279.html?itemId=/content/journal/micro/10.1099/mic.0.26303-0&mimeType=html&fmt=ahah

References

  1. Adriaens P. 1997; Natural attenuation of aryl halides in soils and sediments: recalcitrance vs environmental analysis. In Proceedings of International Symposium: Environmental Biotechnology ISEB3, Oostende, Belgium pp  123–126 Edited by Verachtert H., Verstraete W. Antwerp, Belgium: Technologisch Institut;
    [Google Scholar]
  2. Aelion C. M., Swindoll C. M., Pfaender F. K. 1987; Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer. Appl Environ Microbiol 53:2212–2217
    [Google Scholar]
  3. Alonso J. L., Sabater C., Ibanez M. J., Amoros I., Botella M. S., Carrasco J. 1997; Fenitrothion and 3-methyl-4-nitrophenol degradation by two bacteria in natural waters under laboratory conditions. J Environ Sci Health Part A-Environ Sci Eng Toxic Hazard Subst Control 32:799–812
    [Google Scholar]
  4. Arai H., Yamamoto T., Ohishi T., Shimizu T., Nakata T., Kudo T. 1999; Genetic organization and characteristics of the 3-(3-hydroxyphenyl)propionic acid degradation pathway of Comamonas testosteroni TA441. Microbiology 145:2813–2820
    [Google Scholar]
  5. Ascon-Cabrera M., Lebeault J. M. 1993; Selection of xenobiotic-degrading microorganisms in a biphasic aqueous-organic system. Appl Environ Microbiol 59:1717–1724
    [Google Scholar]
  6. Bachofer R., Lingens F., Schafer W. 1975; Conversion of aniline into pyrocatechol by a Nocardia sp. Incorporation of oxygen-18. FEBS Lett 50:288–290
    [Google Scholar]
  7. Bae H. S., Rhee S. K., Cho Y. G., Hong J. K., Lee S. T. 1997; Two different pathways (a chlorocatechol and a hydroquinone pathway) for the 4-chlorophenol degradation in two isolated bacterial strains. J Microbiol Biotechnol 7:237–241
    [Google Scholar]
  8. Bartha R. 1968; Biochemical transformation of aniline herbicides in soil. J Agric Food Chem 16:602–604
    [Google Scholar]
  9. Bartha R., Pramer D. 1970; Metabolism of acylanilides herbicides. Adv Appl Microbiol 13:317–341
    [Google Scholar]
  10. Bergman J. G., Sanik J. 1957; Determination of trace amounts of chlorine in naphtha. Anal Chem 29:241–243
    [Google Scholar]
  11. Blasco R., Wittich R. M., Mallavarapu M., Timmis K. N., Pieper D. H. 1995; From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235
    [Google Scholar]
  12. Bollag J.-M., Russel S. 1976; Aerobic vs anaerobic metabolism of halogenated anilines by a Paracoccus sp. Microb Ecol 3:65–73
    [Google Scholar]
  13. Boon N., Goris J., De Vos P., Verstraete W., Top E. M. 2000; Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66:2906–2913
    [Google Scholar]
  14. Boon N., Goris J., De Vos P., Verstraete W., Top E. M. 2001; Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Appl Environ Microbiol 67:1107–1115
    [Google Scholar]
  15. Bouwer E. J. 1989; Transformation of xenobiotics in biofilms. In Structure and Function of Biofilms pp  251–267 Edited by Characklis W. G., Wilderer P. A. Chichester: Wiley;
    [Google Scholar]
  16. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  17. Brunsbach F. R., Reineke W. 1993; Degradation of chloroanilines in soil slurry by specialized organisms. Appl Microbiol Biotechnol 40:2–3
    [Google Scholar]
  18. Bull A. T. 1985; Mixed culture and mixed substrate systems. In Comprehensive Biotechnology: the Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine pp  281–299 Edited by Moo-Young M. Oxford, UK: Pergamon Press;
    [Google Scholar]
  19. Colquhoun J. A., Mexson J., Goodfellow M., Ward A. C., Horikoshi K., Bull A. T. 1998; Novel rhodococci and other mycolate actinomycetes from the deep sea. Antonie van Leeuwenhoek 74:27–40
    [Google Scholar]
  20. Davison A. D., Csellner H., Karuso P., Veal D. A. 1994; Synergistic growth of two members from a mixed microbial consortium growing on biphenyl. FEMS Microbiol Ecol 14:133–146
    [Google Scholar]
  21. DeLong E. F., Franks D. G., Alldredge A. L. 1993; Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934
    [Google Scholar]
  22. Dorn E., Knackmuss H.-J. 1978; Chemical structure and biodegradability of halogenated aromatic compounds. Biochem J 174:73–94
    [Google Scholar]
  23. Dorn E., Hellwig M., Reineke W., Knackmuss H.-J. 1974; Isolation and characterization of a 3-chlorobenzoate degrading Pseudomonad. Arch Microbiol 99:61–70
    [Google Scholar]
  24. Ederer M. M., Crawford R. L., Herwig R. P., Orser C. S. 1997; PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol Ecol 6:39–49
    [Google Scholar]
  25. EEC 1976; Council Directive of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment or the community. In 76/464/EEC Directive Official J L129 p 23
    [Google Scholar]
  26. Fauzi A. M., Hardman D. J., Bull A. T. 1996; Biodehalogenation of low concentrations of 1,3-dichloro-propanol by mono and mixed cultures of bacteria. Appl Microbiol Biotechnol 46:660–666
    [Google Scholar]
  27. Federal Register 1979 In Priority Pollutant List (promulgated by the U S Environmental Protection Agency under authority of the Clean Water Act of 1977) vol. 44 p 233
    [Google Scholar]
  28. Harder W., Kuenen J. G., Matin A. 1977; Microbial selection in continuous culture. J Appl Bacteriol 43:1–24
    [Google Scholar]
  29. Hartmann J., Reineke W., Knackmuss H.-J. 1979; Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol 37:421–428
    [Google Scholar]
  30. Hein P., Powlowski J., Barriault D., Hurtubise Y., Ahmad D., Sylvestre M. 1998; Biphenyl-associated meta-cleavage dioxygenases from Comamonas testosteroni B-356. Can J Microbiol 44:42–49
    [Google Scholar]
  31. Helm V., Reber H. 1979; Investigation on the regulation of aniline utilisation in Pseudomonas multivorans strain An 1. Eur J Appl Microbiol Biotechnol 7:191–199
    [Google Scholar]
  32. Hollender J., Hopp J., Dott W. 1997; Degradation of 4-chlorophenol via the meta-cleavage pathway by Comamonas testosteroni JH5. Appl Environ Microbiol 63:4567–4572
    [Google Scholar]
  33. Kardena E. 1995 The characterisation of a three-membered microbial community growing on 1,6-dichlorohexane PhD thesis University of Wales College of Cardiff; Cardiff, Wales, UK:
    [Google Scholar]
  34. Kaufman D. D., Blake J. 1973; Microbial degradation of several acetamide, acylanilide, carbamate, toluidine and urea pesticides. Soil Biol Biochem 5:297–308
    [Google Scholar]
  35. Kearney P. C., Kaufmann D. D. 1969 Degradation of Herbicides New York: Marcel Dekker;
  36. Kearney P. C., Kaufmann D. D. 1975 Herbicides: Chemistry, Degradation and Mode of Action New York: Marcel Dekker;
    [Google Scholar]
  37. Lappin H. M., Greaves M. P., Slater J. H. 1985; Degradation of the herbicide mecoprop (2-(2-methyl-4-chlorophenoxy)propionic acid) by a synergistic microbial community. Appl Environ Microbiol 49:429–433
    [Google Scholar]
  38. Latorre J., Reineke W., Knackmuss H.-J. 1984; Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch Microbiol 140:159–165
    [Google Scholar]
  39. Lee C. M., Lu C. J., Chuang M. S. 1994; Effect of immobilized cells on the biodegradation of chlorinated phenols. Water Sci Technol 30:87–90
    [Google Scholar]
  40. Lendenmann U., Egli T. 1998; Kinetic models for the growth of Escherichia coli with mixtures of sugars under carbon-limited conditions. Biotechnol Bioeng 59:99–107
    [Google Scholar]
  41. Lewis D. L., Kolling H. P., Hodson R. E. 1986; Nutrient limitation and adaptation of microbial populations of chemical transformations. Appl Environ Microbiol 51:598–603
    [Google Scholar]
  42. Lo K. V., Zhiu C. M., Cheuk W. 1998; Biodegradation of pentachlorophenol by Flavobacterium species in batch and immobilized continuous reactors. Environ Technol 19:91–96
    [Google Scholar]
  43. Loidl M., Hinteregger C., Ditzelmuller G., Ferschl A., Streichsbier F. 1990; Degradation of aniline and monochlorinated anilines by soil-born Pseudomonas acidovorans strains. Arch Microbiol 155:56–61
    [Google Scholar]
  44. Männistö M. K., Tiirola M. A., Salkinoja-Salonen M. S., Kulomaa M. S., Puhakka J. A. 1999; Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol 171:189–197
    [Google Scholar]
  45. Obata H., Kawahara H., Sugiyama A. 1997; Microbial transfomation of carbazole to indole-3-acetic acid by Flavobacterium sp. OCM-1. Biosci Biotechnol Biochem 61:525–526
    [Google Scholar]
  46. Palleroni N. J. 1984; Genus I. Pseudomonas Migula 1894. In Bergey's Manual of Systematic Bacteriology vol. 1 pp  141–199 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  47. Paris D. F., Wolfe N. L. 1987; Relationship between properties of a series of anilines and their transformation by bacteria. Appl Environ Microbiol 53:911–916
    [Google Scholar]
  48. Parris G. E. 1980; Environmental and metabolic transformations of primary aromatic amines and related compounds. In Residue Reviews vol. 76 pp  1–30 Edited by Gunther F. A. New York: Springer;
    [Google Scholar]
  49. Pitcher D. G., Saunders S. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156
    [Google Scholar]
  50. Reber H., Helm V., Karanth N. G. K. 1979; Comparative studies on the metabolism of aniline and chloroanilines by Pseudomonas multivorans strain An 1. Eur J Appl Microbiol Biotechnol 7:181–189
    [Google Scholar]
  51. Rozgaj R., Glancer-Soljan M. 1992; Total degradation of 6-aminophthalene-2-sulphonic acid by a mixed culture consisting of different bacterial genera. FEMS Microbiol Ecol 86:229–235
    [Google Scholar]
  52. Sala-Trepat J. M., Evans W. C. 1971; The meta-cleavage of catechol by Azotobacter species. Eur J Biochem 20:400–413
    [Google Scholar]
  53. Senior E., Bull A. T., Slater J. H. 1976; Enzyme evolution in a microbial community growing on the herbicide Dalapon. Nature 263:476–479
    [Google Scholar]
  54. Shi J., Zhao X. D., Hickey R. F., Voice T. C. 1995; Role of adsorption in granular activated carbon-fluidized bed reactor. Water Environ Res 67:302–309
    [Google Scholar]
  55. Shreve G. S., Vogel T. M. 1992; Comparison of substrate utilisation and growth kinetics between immobilized and suspended Pseudomonas cells. Biotechnol Bioeng 41:370–379
    [Google Scholar]
  56. Sjoblad R. D., Bollag J.-M. 1981; Oxidative coupling of aromatic compounds by enzymes from soil organisms. In Soil Biochemistry vol. 5 pp  113–152 Edited by Paul E. A., Ladd J. N. New York: Marcel Dekker;
    [Google Scholar]
  57. Surovtseva E. G., Vasileva G. K., Volnova A. I., Baskunov B. P. 1980a; Destruction of monochloroanilines by the meta-cleavage by Alcaligenes faecalis. Dokl Akad Nauk SSSR 254:226–230
    [Google Scholar]
  58. Surovtseva E. G., Volnova A. I., Shatskaya T. Y. 1980b; Degradation of monochlorosubstituted anilines by Alcaligenes faecalis. Mikrobiologiya 49:351–354
    [Google Scholar]
  59. Surovtseva E. G., Ivoilov V. S., Karasevich Y. N., Vasileva G. K. 1985; Chlorinated anilines, a source of carbon, nitrogen and energy for Pseudomonas diminuta. Mikrobiologiya 54:948–952
    [Google Scholar]
  60. Surovtseva E. G., Ivoilov V. S., Karasevich Y. N. 1987; Metabolism of chlorinated anilines by Pseudomonas diminuta. Mikrobiologiya 55:459–463
    [Google Scholar]
  61. Surovtseva E. G., Sukhikh A. P., Ivoilov V. S. 1993; Isozymes of the pathway for aniline and 4-chloroaniline preparatory metabolism in Alcaligenes sp. Mikrobiologiya 61:99–106
    [Google Scholar]
  62. Surovtseva E. G., Ivoilov V. S., Vasileva G. K., Belyaev S. S. 1996; Degradation of chlorinated anilines by certain representatives of the genera Aquaspirillum and Paracoccus. Mikrobiologiya 65:553–559
    [Google Scholar]
  63. Swenson W., Arendt J., Wilson D. S. 2000; Artificial selection of microbial ecosystems for 3-chloroaniline biodegradation. Environ Microbiol 2:564–571
    [Google Scholar]
  64. Thompson I. P., Bailey M. J., Ellis R. J., Purdy K. J. 1993; Sub-grouping of bacterial populations by cellular fatty acid composition. FEMS Microbiol Ecol 102:75–84
    [Google Scholar]
  65. Vandamme P., Bernardet J. F., Segers P., Kersters K., Holmes B. 1994; New perspectives in the classification of the flavobacteria – description of Chryseobacterium gen.nov., Bergeyella gen.nov. and Empedobacter nom. rev. Int J Syst Bacteriol 44:827–831
    [Google Scholar]
  66. Wallnofer P. 1969; The decomposition of urea herbicides by Bacillus sphaericus isolated from soil. Weed Res 9:333–339
    [Google Scholar]
  67. Wiggins B. A., Jones S. H., Alexander M. 1987; Explanations for the acclimation period preceding the mineralisation of organic chemicals in aquatic environments. Appl Environ Microbiol 53:791–796
    [Google Scholar]
  68. Wolfaardt G. M., Lawrence J. R., Robarts R. D., Caldwell D. E. 1994; The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium. Can J Microbiol 40:331–340
    [Google Scholar]
  69. Zeyer J., Kearney P. C. 1982; Microbial degradation of para-chloroaniline as sole carbon and nitrogen source. Pesticide Biochem Physiol 17:215–223
    [Google Scholar]
  70. Zeyer J., Wasserfallen A., Timmis K. N. 1985; Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol 50:447–453
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26303-0
Loading
/content/journal/micro/10.1099/mic.0.26303-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error