1887

Abstract

A bacterial consortium comprising four different species was isolated from an Indonesian agricultural soil using a mixture of aniline and 4-chloroaniline (4CA) as principal carbon sources. The four species were identified as SB1, SB2, SB4 and SB5. Growth studies on aniline and 4CA as single and mixed substrates demonstrated that the bacteria preferred to grow on and utilize aniline rather than 4CA, although both compounds were eventually depleted from the culture supernatant. However, despite 100 % disappearance of the parent substrates, the degradation of 4CA was always characterized by incomplete dechlorination and 4-chlorocatechol accumulation. This result suggests that further degradation of 4-chlorocatechol may be the rate-limiting step in the metabolism of 4CA by the bacterial consortium. HPLC-UV analysis showed that 4-chlorocatechol was further degraded via an -cleavage pathway by the bacterial consortium. This hypothesis was supported by the results from enzyme assays of the crude cell extract of the consortium revealing catechol 1,2-dioxygenase activity which converted catechol and 4-chlorocatechol to ,-muconic acid and 3-chloro-,-muconic acid respectively. However, the enzyme had a much higher conversion rate for catechol [156 U (g protein)] than for 4-chlorocatechol [17·2 U (g protein)], indicating preference for non-chlorinated substrates. Members of the bacterial consortium were also characterized individually. All isolates were able to assimilate aniline. SB4 was able to grow on 4CA solely, while SB5 was able to grow on 4-chlorocatechol. These results suggest that the degradation of 4CA in the presence of aniline by the bacterial consortium was a result of interspecies interactions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26303-0
2003-11-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493279.html?itemId=/content/journal/micro/10.1099/mic.0.26303-0&mimeType=html&fmt=ahah

References

  1. Adriaens P.. 1997; Natural attenuation of aryl halides in soils and sediments: recalcitrance vs environmental analysis. In Proceedings of International Symposium: Environmental Biotechnology ISEB3, Oostende, Belgium pp 123–126 Edited by Verachtert H., Verstraete W.. Antwerp, Belgium: Technologisch Institut;
    [Google Scholar]
  2. Aelion C. M., Swindoll C. M., Pfaender F. K.. 1987; Adaptation to and biodegradation of xenobiotic compounds by microbial communities from a pristine aquifer. Appl Environ Microbiol53:2212–2217
    [Google Scholar]
  3. Alonso J. L., Sabater C., Ibanez M. J., Amoros I., Botella M. S., Carrasco J.. 1997; Fenitrothion and 3-methyl-4-nitrophenol degradation by two bacteria in natural waters under laboratory conditions. J Environ Sci Health Part A-Environ Sci Eng Toxic Hazard Subst Control32:799–812
    [Google Scholar]
  4. Arai H., Yamamoto T., Ohishi T., Shimizu T., Nakata T., Kudo T.. 1999; Genetic organization and characteristics of the 3-(3-hydroxyphenyl)propionic acid degradation pathway of Comamonas testosteroni TA441. Microbiology145:2813–2820
    [Google Scholar]
  5. Ascon-Cabrera M., Lebeault J. M.. 1993; Selection of xenobiotic-degrading microorganisms in a biphasic aqueous-organic system. Appl Environ Microbiol59:1717–1724
    [Google Scholar]
  6. Bachofer R., Lingens F., Schafer W.. 1975; Conversion of aniline into pyrocatechol by a Nocardia sp. Incorporation of oxygen-18. FEBS Lett50:288–290
    [Google Scholar]
  7. Bae H. S., Rhee S. K., Cho Y. G., Hong J. K., Lee S. T.. 1997; Two different pathways (a chlorocatechol and a hydroquinone pathway) for the 4-chlorophenol degradation in two isolated bacterial strains. J Microbiol Biotechnol7:237–241
    [Google Scholar]
  8. Bartha R.. 1968; Biochemical transformation of aniline herbicides in soil. J Agric Food Chem16:602–604
    [Google Scholar]
  9. Bartha R., Pramer D.. 1970; Metabolism of acylanilides herbicides. Adv Appl Microbiol13:317–341
    [Google Scholar]
  10. Bergman J. G., Sanik J.. 1957; Determination of trace amounts of chlorine in naphtha. Anal Chem29:241–243
    [Google Scholar]
  11. Blasco R., Wittich R. M., Mallavarapu M., Timmis K. N., Pieper D. H.. 1995; From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem270:29229–29235
    [Google Scholar]
  12. Bollag J.-M., Russel S.. 1976; Aerobic vs anaerobic metabolism of halogenated anilines by a Paracoccus sp. Microb Ecol3:65–73
    [Google Scholar]
  13. Boon N., Goris J., De Vos P., Verstraete W., Top E. M.. 2000; Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol66:2906–2913
    [Google Scholar]
  14. Boon N., Goris J., De Vos P., Verstraete W., Top E. M.. 2001; Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae. Appl Environ Microbiol67:1107–1115
    [Google Scholar]
  15. Bouwer E. J.. 1989; Transformation of xenobiotics in biofilms. In Structure and Function of Biofilms pp 251–267 Edited by Characklis W. G., Wilderer P. A.. Chichester: Wiley;
  16. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  17. Brunsbach F. R., Reineke W.. 1993; Degradation of chloroanilines in soil slurry by specialized organisms. Appl Microbiol Biotechnol40:2–3
    [Google Scholar]
  18. Bull A. T.. 1985; Mixed culture and mixed substrate systems. In Comprehensive Biotechnology: the Principles, Applications and Regulations of Biotechnology in Industry, Agriculture and Medicine pp 281–299 Edited by Moo-Young M.. Oxford, UK: Pergamon Press;
  19. Colquhoun J. A., Mexson J., Goodfellow M., Ward A. C., Horikoshi K., Bull A. T.. 1998; Novel rhodococci and other mycolate actinomycetes from the deep sea. Antonie van Leeuwenhoek74:27–40
    [Google Scholar]
  20. Davison A. D., Csellner H., Karuso P., Veal D. A.. 1994; Synergistic growth of two members from a mixed microbial consortium growing on biphenyl. FEMS Microbiol Ecol14:133–146
    [Google Scholar]
  21. DeLong E. F., Franks D. G., Alldredge A. L.. 1993; Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr38:924–934
    [Google Scholar]
  22. Dorn E., Knackmuss H.-J.. 1978; Chemical structure and biodegradability of halogenated aromatic compounds. Biochem J174:73–94
    [Google Scholar]
  23. Dorn E., Hellwig M., Reineke W., Knackmuss H.-J.. 1974; Isolation and characterization of a 3-chlorobenzoate degrading Pseudomonad. Arch Microbiol99:61–70
    [Google Scholar]
  24. Ederer M. M., Crawford R. L., Herwig R. P., Orser C. S.. 1997; PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol Ecol6:39–49
    [Google Scholar]
  25. EEC 1976; Council Directive of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment or the community. In 76/464/EEC Directive Official J L129 p23
    [Google Scholar]
  26. Fauzi A. M., Hardman D. J., Bull A. T.. 1996; Biodehalogenation of low concentrations of 1,3-dichloro-propanol by mono and mixed cultures of bacteria. Appl Microbiol Biotechnol46:660–666
    [Google Scholar]
  27. Federal Register 1979; In Priority Pollutant List (promulgated by the U S Environmental Protection Agency under authority of the Clean Water Act of 1977)vol. 44 p233
    [Google Scholar]
  28. Harder W., Kuenen J. G., Matin A.. 1977; Microbial selection in continuous culture. J Appl Bacteriol43:1–24
    [Google Scholar]
  29. Hartmann J., Reineke W., Knackmuss H.-J.. 1979; Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Appl Environ Microbiol37:421–428
    [Google Scholar]
  30. Hein P., Powlowski J., Barriault D., Hurtubise Y., Ahmad D., Sylvestre M.. 1998; Biphenyl-associated meta-cleavage dioxygenases from Comamonas testosteroni B-356. Can J Microbiol44:42–49
    [Google Scholar]
  31. Helm V., Reber H.. 1979; Investigation on the regulation of aniline utilisation in Pseudomonas multivorans strain An 1. Eur J Appl Microbiol Biotechnol7:191–199
    [Google Scholar]
  32. Hollender J., Hopp J., Dott W.. 1997; Degradation of 4-chlorophenol via the meta-cleavage pathway by Comamonas testosteroni JH5. Appl Environ Microbiol63:4567–4572
    [Google Scholar]
  33. Kardena E.. 1995; The characterisation of a three-membered microbial community growing on 1,6-dichlorohexane PhD thesis University of Wales College of Cardiff; Cardiff, Wales, UK:
    [Google Scholar]
  34. Kaufman D. D., Blake J.. 1973; Microbial degradation of several acetamide, acylanilide, carbamate, toluidine and urea pesticides. Soil Biol Biochem5:297–308
    [Google Scholar]
  35. Kearney P. C., Kaufmann D. D.. 1969; Degradation of Herbicides New York: Marcel Dekker;
  36. Kearney P. C., Kaufmann D. D.. 1975; Herbicides: Chemistry, Degradation and Mode of Action New York: Marcel Dekker;
    [Google Scholar]
  37. Lappin H. M., Greaves M. P., Slater J. H.. 1985; Degradation of the herbicide mecoprop (2-(2-methyl-4-chlorophenoxy)propionic acid) by a synergistic microbial community. Appl Environ Microbiol49:429–433
    [Google Scholar]
  38. Latorre J., Reineke W., Knackmuss H.-J.. 1984; Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange. Arch Microbiol140:159–165
    [Google Scholar]
  39. Lee C. M., Lu C. J., Chuang M. S.. 1994; Effect of immobilized cells on the biodegradation of chlorinated phenols. Water Sci Technol30:87–90
    [Google Scholar]
  40. Lendenmann U., Egli T.. 1998; Kinetic models for the growth of Escherichia coli with mixtures of sugars under carbon-limited conditions. Biotechnol Bioeng59:99–107
    [Google Scholar]
  41. Lewis D. L., Kolling H. P., Hodson R. E.. 1986; Nutrient limitation and adaptation of microbial populations of chemical transformations. Appl Environ Microbiol51:598–603
    [Google Scholar]
  42. Lo K. V., Zhiu C. M., Cheuk W.. 1998; Biodegradation of pentachlorophenol by Flavobacterium species in batch and immobilized continuous reactors. Environ Technol19:91–96
    [Google Scholar]
  43. Loidl M., Hinteregger C., Ditzelmuller G., Ferschl A., Streichsbier F.. 1990; Degradation of aniline and monochlorinated anilines by soil-born Pseudomonas acidovorans strains. Arch Microbiol155:56–61
    [Google Scholar]
  44. Männistö M. K., Tiirola M. A., Salkinoja-Salonen M. S., Kulomaa M. S., Puhakka J. A.. 1999; Diversity of chlorophenol-degrading bacteria isolated from contaminated boreal groundwater. Arch Microbiol171:189–197
    [Google Scholar]
  45. Obata H., Kawahara H., Sugiyama A.. 1997; Microbial transfomation of carbazole to indole-3-acetic acid by Flavobacterium sp. OCM-1. Biosci Biotechnol Biochem61:525–526
    [Google Scholar]
  46. Palleroni N. J.. 1984; Genus I. Pseudomonas Migula 1894. In Bergey's Manual of Systematic Bacteriologyvol. 1 pp 141–199 Edited by Krieg N. R., Holt J. G.. Baltimore: Williams & Wilkins;
  47. Paris D. F., Wolfe N. L.. 1987; Relationship between properties of a series of anilines and their transformation by bacteria. Appl Environ Microbiol53:911–916
    [Google Scholar]
  48. Parris G. E.. 1980; Environmental and metabolic transformations of primary aromatic amines and related compounds. In Residue Reviewsvol. 76 pp 1–30 Edited by Gunther F. A.. New York: Springer;
  49. Pitcher D. G., Saunders S. A., Owen R. J.. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol8:151–156
    [Google Scholar]
  50. Reber H., Helm V., Karanth N. G. K.. 1979; Comparative studies on the metabolism of aniline and chloroanilines by Pseudomonas multivorans strain An 1. Eur J Appl Microbiol Biotechnol7:181–189
    [Google Scholar]
  51. Rozgaj R., Glancer-Soljan M.. 1992; Total degradation of 6-aminophthalene-2-sulphonic acid by a mixed culture consisting of different bacterial genera. FEMS Microbiol Ecol86:229–235
    [Google Scholar]
  52. Sala-Trepat J. M., Evans W. C.. 1971; The meta-cleavage of catechol by Azotobacter species. Eur J Biochem20:400–413
    [Google Scholar]
  53. Senior E., Bull A. T., Slater J. H.. 1976; Enzyme evolution in a microbial community growing on the herbicide Dalapon. Nature263:476–479
    [Google Scholar]
  54. Shi J., Zhao X. D., Hickey R. F., Voice T. C.. 1995; Role of adsorption in granular activated carbon-fluidized bed reactor. Water Environ Res67:302–309
    [Google Scholar]
  55. Shreve G. S., Vogel T. M.. 1992; Comparison of substrate utilisation and growth kinetics between immobilized and suspended Pseudomonas cells. Biotechnol Bioeng41:370–379
    [Google Scholar]
  56. Sjoblad R. D., Bollag J.-M.. 1981; Oxidative coupling of aromatic compounds by enzymes from soil organisms. In Soil Biochemistryvol. 5 pp 113–152 Edited by Paul E. A., Ladd J. N. New York: Marcel Dekker;
  57. Surovtseva E. G., Vasileva G. K., Volnova A. I., Baskunov B. P.. 1980a; Destruction of monochloroanilines by the meta-cleavage by Alcaligenes faecalis. Dokl Akad Nauk SSSR254:226–230
    [Google Scholar]
  58. Surovtseva E. G., Volnova A. I., Shatskaya T. Y.. 1980b; Degradation of monochlorosubstituted anilines by Alcaligenes faecalis. Mikrobiologiya49:351–354
    [Google Scholar]
  59. Surovtseva E. G., Ivoilov V. S., Karasevich Y. N., Vasileva G. K.. 1985; Chlorinated anilines, a source of carbon, nitrogen and energy for Pseudomonas diminuta. Mikrobiologiya54:948–952
    [Google Scholar]
  60. Surovtseva E. G., Ivoilov V. S., Karasevich Y. N.. 1987; Metabolism of chlorinated anilines by Pseudomonas diminuta. Mikrobiologiya55:459–463
    [Google Scholar]
  61. Surovtseva E. G., Sukhikh A. P., Ivoilov V. S.. 1993; Isozymes of the pathway for aniline and 4-chloroaniline preparatory metabolism in Alcaligenes sp. Mikrobiologiya61:99–106
    [Google Scholar]
  62. Surovtseva E. G., Ivoilov V. S., Vasileva G. K., Belyaev S. S.. 1996; Degradation of chlorinated anilines by certain representatives of the genera Aquaspirillum and Paracoccus. Mikrobiologiya65:553–559
    [Google Scholar]
  63. Swenson W., Arendt J., Wilson D. S.. 2000; Artificial selection of microbial ecosystems for 3-chloroaniline biodegradation. Environ Microbiol2:564–571
    [Google Scholar]
  64. Thompson I. P., Bailey M. J., Ellis R. J., Purdy K. J.. 1993; Sub-grouping of bacterial populations by cellular fatty acid composition. FEMS Microbiol Ecol102:75–84
    [Google Scholar]
  65. Vandamme P., Bernardet J. F., Segers P., Kersters K., Holmes B.. 1994; New perspectives in the classification of the flavobacteria – description of Chryseobacterium gen.nov., Bergeyella gen.nov. and Empedobacter nom. rev. Int J Syst Bacteriol44:827–831
    [Google Scholar]
  66. Wallnofer P.. 1969; The decomposition of urea herbicides by Bacillus sphaericus isolated from soil. Weed Res9:333–339
    [Google Scholar]
  67. Wiggins B. A., Jones S. H., Alexander M.. 1987; Explanations for the acclimation period preceding the mineralisation of organic chemicals in aquatic environments. Appl Environ Microbiol53:791–796
    [Google Scholar]
  68. Wolfaardt G. M., Lawrence J. R., Robarts R. D., Caldwell D. E.. 1994; The role of interactions, sessile growth, and nutrient amendments on the degradative efficiency of a microbial consortium. Can J Microbiol40:331–340
    [Google Scholar]
  69. Zeyer J., Kearney P. C.. 1982; Microbial degradation of para-chloroaniline as sole carbon and nitrogen source. Pesticide Biochem Physiol17:215–223
    [Google Scholar]
  70. Zeyer J., Wasserfallen A., Timmis K. N.. 1985; Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol50:447–453
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26303-0
Loading
/content/journal/micro/10.1099/mic.0.26303-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error