1887

Abstract

The authors have previously reported the identification of novel signal peptides (SPs) from using transposon insertion. Of these, SP310 caused the highest level of secretion. However, the levels were lower than those obtained using the signal peptide from Usp45 (SPUSP), the major secreted lactococcal protein. In this study, site-directed mutagenesis of signal peptide SP310 was used to investigate the effect of amino acid alterations on lactococcal secretion and to improve secretion efficiency. Several mutated SPs caused higher secretion. This increase in secretion was due to modifications in the cleavage region. In fermenter experiments, the signal peptide SP310mut2 resulted in an extracellular nuclease (Nuc) yield which was 45 % higher than that with the natural SP310. Surprisingly, increasing the hydrophobicity of the hydrophobic core or increasing the number of positively charged amino acids in the N-terminal region of SP310 decreased secretion. High extracellular yields of Nuc resulted from more efficient secretion, as strains with less efficient SPs accumulated more intracellular SP-Nuc precursor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26299-0
2003-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492193.html?itemId=/content/journal/micro/10.1099/mic.0.26299-0&mimeType=html&fmt=ahah

References

  1. Chen M., Nagarajan V. 1994; Effect of alteration of charged residues at the N termini of signal peptides on protein export in Bacillus subtilis . J Bacteriol 176:5796–5801
    [Google Scholar]
  2. Chen H., Kim J., Kendall D. A. 1996; Competition between functional signal peptides demonstrates variation in affinity for the secretion pathway. J Bacteriol 178:6658–6664
    [Google Scholar]
  3. Cuatrecasas P., Fuchs S., Anfinsen C. B. 1967; Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus . J Biol Chem 242:1541–1547
    [Google Scholar]
  4. Gasson M. 1983; Plasmid complements of Streptococcus lactis NCDO712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9
    [Google Scholar]
  5. Grant S. G., Jesse J., Bloom F. R., Hanahan D. 1990; Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A 87:4645–4649
    [Google Scholar]
  6. Holo H., Nes I. F. 1989; High-frequency transformation, by electroporation of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55:3119–3123
    [Google Scholar]
  7. Izard J. W., Doughty M. B., Kendall D. A. 1995; Physical and conformational properties of synthetic idealized signal sequences parallel their biological function. Biochemistry 34:9904–9912
    [Google Scholar]
  8. Izard J. W., Rusch S. L., Kendall D. A. 1996; The amino-terminal charge and core region hydrophobicity interdependently contribute to the function of signal sequences. J Biol Chem 271:21579–21582
    [Google Scholar]
  9. Jensen P. R., Hammer K. 1993; Minimal requirements for exponential growth of Lactococcus lactis . Appl Environ Microbiol 59:4363–4366
    [Google Scholar]
  10. Lammertyn E., Anné J. 1998; Modifications of Streptomyces signal peptides and their effects on protein production and secretion. FEMS Microbiol Lett 160:1–10
    [Google Scholar]
  11. Le Loir Y., Gruss A., Ehrlich S. D., Langella P. 1998; A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis . J Bacteriol 180:1895–1903
    [Google Scholar]
  12. Le Loir Y., Nouaille S., Commissaire J., Bretigny L., Gruss A., Langella P. 2001; Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis . Appl Environ Microbiol 67:4119–4127
    [Google Scholar]
  13. Madsen S. M., Arnau J., Vrang A., Givskov M., Israelsen H. 1999; Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis . Mol Microbiol 32:75–87
    [Google Scholar]
  14. Miyoshi A., Poquet I., Azevedo V. 7 other authors 2002; Controlled production of stable heterologous proteins in Lactococcus lactis . Appl Environ Microbiol 68:3141–3146
    [Google Scholar]
  15. Nielsen H., Engelbrecht J., Brunak S., von Heijne G. 1997; A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8:581–599
    [Google Scholar]
  16. Poquet I., Ehrlich S. D., Gruss A. 1998; An export-specific reporter designed for gram-positive bacteria: application to Lactococcus lactis . J Bacteriol 180:1904–1912
    [Google Scholar]
  17. Poquet I., Saint V., Seznec E., Simoes N., Bolotin A., Gruss A. 2000; HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol 35:1042–1051
    [Google Scholar]
  18. Ravn P., Arnau J., Madsen S., Vrang A., Israelsen H. 2000; The development of Tn Nuc and its use for the isolation of novel secretion signals in Lactococcus lactis . Gene 242:347–356
    [Google Scholar]
  19. Rusch S. L., Kendall D. A. 1992; Signal sequences containing multiple aromatic residues. J Mol Biol 224:77–85
    [Google Scholar]
  20. Rusch S. L., Kendall D. A. 1994; Transport of an export-defective protein by a highly hydrophobic signal peptide. J Biol Chem 269:1243–1248
    [Google Scholar]
  21. Rusch S. L., Chen H., Izard J. W., Kendall D. A. 1994; Signal peptide hydrophobicity is finely tailored for function. J Cell Biochem 55:209–217
    [Google Scholar]
  22. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  23. Steidler L., Hans W., Schotte L., Neirynck S., Obermeier F., Falk W., Fiers W., Remaut E. 2000; Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289:1352–1355
    [Google Scholar]
  24. Takimura Y., Kato M., Ohta T., Yamagata H., Udaka S. 1997; Secretion of human interleukin-2 in biologically active form by Bacillus brevis directly into culture medium. Biosci Biotechnol Biochem 61:1858–1861
    [Google Scholar]
  25. van Asseldonk M., de Vos W. M., Simons G. 1993; Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha-amylase. Mol Gen Genet 240:428–434
    [Google Scholar]
  26. van Wely K. H. M., Swaving J., Freudl R., Driessen A. J. M. 2001; Translocation of proteins across the cell envelope of gram-positive bacteria. FEMS Microbiol Rev 25:437–454
    [Google Scholar]
  27. von Heijne G. 1983; Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133:17–21
    [Google Scholar]
  28. von Heijne G. 1990; The signal peptide. J Mol Biol 115:195–201
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26299-0
Loading
/content/journal/micro/10.1099/mic.0.26299-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error