1887

Abstract

The gene encodes the transcriptional regulator RhlR which has a central role in the quorum-sensing response. Different gene products involved in bacterial pathogenesis are regulated at the transcriptional level by two quorum-sensing response systems, Las and Rhl. The expression of has been reported to be under the control of the Las system, but its transcriptional regulation has not been studied in detail. Here, the promoter region has been characterized and shown to present four different transcription start sites, two of which are included in the upstream gene () coding region. It was found that expression is not only dependent on LasR but also on different regulatory proteins such as Vfr and RhlR itself, and also on the alternative sigma factor . It is reported that expression is partially LasR-independent under certain culture conditions and is strongly influenced by environmental factors.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26282-0
2003-11-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/11/mic1493073.html?itemId=/content/journal/micro/10.1099/mic.0.26282-0&mimeType=html&fmt=ahah

References

  1. Albus A. M., Pesci E. C., Runyen-Janecky L. J., West S. E. H., Iglewski B. H.. 1997; Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol179:3928–3935
    [Google Scholar]
  2. Anderson R. M., Zimprich C. A., Rust L.. 1999; A second operator is involved in Pseudomonas aeruginosa elastase ( lasB) activation. J Bacteriol181:6264–6270
    [Google Scholar]
  3. Brint J. M., Ohman D. E.. 1995; Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under control of RhlR–RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR–LuxI family. J Bacteriol177:7155–7163
    [Google Scholar]
  4. Costerton J. W.. 1980; Pseudomonas aeruginosa in nature and disease. In Pseudomonas aeruginosa: the Organism, Diseases it Causes and their Treatment pp 15–24 Edited by Sabath C. D. Bern, Switzerland: Hans Huber;
  5. De Kievit T., Kakai Y., Register J. K., Pesci E. C., Iglewski B. H.. 2002; Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. FEMS Microbiol Lett212:101–106
    [Google Scholar]
  6. Diggle S. P., Winzer K., Lazdunski A., Williams P., Cámara M.. 2002; Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. J Bacteriol184:2576–2586
    [Google Scholar]
  7. Fuqua C., Parsek M. R., Greenberg E. P.. 2001; Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum-sensing. Annu Rev Genet35:439–468
    [Google Scholar]
  8. Gambello M. J., Iglewski B. H.. 1991; Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol173:3000–3009
    [Google Scholar]
  9. Hancock R. E. W., Carey A. M.. 1979; Outer membrane of Pseudomonas aeruginosa: heat- and 2-mercaptoethanol-modifiable proteins. J Bacteriol140:902–910
    [Google Scholar]
  10. Hardalo C., Edberg S. C.. 1997; Pseudomonas aeruginosa: assessment of risk from drinking water. Crit Rev Microbiol23:47–75
    [Google Scholar]
  11. Ishimito K. S., Lory S.. 1989; Formation of pilin in Pseudomonas aeruginosa requires the alternative sigma factor (RpoN) of RNA polymerase. Proc Natl Acad Sci U S A86:1954–1957
    [Google Scholar]
  12. Kiratisin P., Tucker K. D., Passador L.. 2002; LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol184:4912–4919
    [Google Scholar]
  13. Latifi A., Foglino M., Tanaka K., Williams P., Lazdunski A.. 1996; A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhlR (VsmR) to expression of the stationary sigma factor RpoS. Mol Microbiol21:1137–1146
    [Google Scholar]
  14. Maier M. R., Soberón-Chávez G.. 2000; Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol54:625–633
    [Google Scholar]
  15. McKnight S. L., Iglewski B. H., Pesci E. C.. 2000; The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol182:2702–2708
    [Google Scholar]
  16. Medina G., Juárez K., Soberón-Chávez G.. 2003a; The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. J Bacteriol185:377–380
    [Google Scholar]
  17. Medina G., Juárez K., Valderrama B., Soberón-Chávez G.. 2003b; Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol185:5976–5983
    [Google Scholar]
  18. Miller J. H.. 1972; Experiments in Molecular Genetics pp 431–435 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  19. Ochsner U. A., Reiser J.. 1995; Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A92:6424–6428
    [Google Scholar]
  20. Ochsner U. A., Fiechter A., Reiser J.. 1994a; Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem269:19787–19795
    [Google Scholar]
  21. Ochsner U. A., Koch A. K., Fiechter A., Reiser J.. 1994b; Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol176:2044–2054
    [Google Scholar]
  22. Pearson J. P., Pesci E. C., Iglewski B. H.. 1997; Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol179:5756–5767
    [Google Scholar]
  23. Pesci E. C., Iglewski B. H.. 1997; The chain of command in Pseudomonas quorum sensing. Trends Microbiol5:132–135
    [Google Scholar]
  24. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H.. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol179:3127–3132
    [Google Scholar]
  25. Rahim R., Ochsner U., Olvera C., Graninger M., Messner P., Lam J. S., Soberón-Chávez G.. 2001; Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol40:708–718
    [Google Scholar]
  26. Runyen-Janecky L. J., Sample A. K., Maleniak C., West S. E. H.. 1997; A divergently transcribed open reading frame is located upstream of the Pseudomonas aeruginosa vfr gene, a homolog of Escherichia coli crp. J Bacteriol179:2802–2809
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  28. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P.. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol185:2066–2079
    [Google Scholar]
  29. Shadel G. S., Baldwin T. O.. 1992; Identification of a distantly located regulatory element in the luxD gene required for negative autoregulation of the Vibrio fischeri luxR gene. J Biol Chem267:7690–7695
    [Google Scholar]
  30. Smith A. W., Iglewski B. H.. 1989; Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res17: 10509
    [Google Scholar]
  31. Spaink H., Okker R., Wijffelman C., Pees E., Lugtenberg B.. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL1Jl. Plant Mol Biol9:27–39
    [Google Scholar]
  32. Van Delden C., Iglewski B. H.. 1998; Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis4:551–560
    [Google Scholar]
  33. Vasil M. L.. 2003; DNA microarrays in analysis of quorum sensing: strengths and limitations. J Bacteriol185:2061–2065
    [Google Scholar]
  34. Ventre I., Ledgham F., Prima V., Lazdunski A., Foglino M., Sturgis J. N.. 2003; Dimerization of the quorum sensing regulator RhlR: development of a method using EGFP fluorescence anisotropy. Mol Microbiol48:187–198
    [Google Scholar]
  35. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H.. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol185:2080–2095
    [Google Scholar]
  36. West S. E. H., Sample A. K., Runyen-Janecky L. J.. 1994a; The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor protein family. J Bacteriol176:7532–7542
    [Google Scholar]
  37. West S. E. H., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J.. 1994b; Construction of improved EscherichiaPseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene128:81–86
    [Google Scholar]
  38. Whiteley M., Greenberg E. P.. 2001; Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol183:5529–5534
    [Google Scholar]
  39. Whiteley M., Lee K. M., Greenberg E. P.. 1999; Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A96:13904–13909
    [Google Scholar]
  40. Winson M. K., Swift S., Fish L., Throup J. P., Jørgensen F., Chhabra S. R., Bycroft B. W., Williams P., Stewart S. A. B.. 1998; Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett163:185–192
    [Google Scholar]
  41. Zhang Y., Miller R. M.. 1992; Enhancement of octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant. Appl Environ Microbiol58:3276–3282
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26282-0
Loading
/content/journal/micro/10.1099/mic.0.26282-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error