1887

Abstract

The increasing number of genes encoding eukaryotic-type Ser/Thr protein kinases (ESTPKs) in prokaryotes, identified mostly due to genome-sequencing projects, suggests that these enzymes play an indispensable role in many bacterial species. Some prokaryotes, such as , carry numerous genes of this type. Though the regulatory pathways have been intensively studied in the organism, experimental proof of the physiological function of ESTPKs is scarce. This review presents a family portrait of the genes identified in the sequence of the A3(2) genome. Based on the available experimental data on ESTPKs in streptomycetes and related bacteria, and on computer-assisted sequence analyses, possible roles of these enzymes in the regulation of cellular processes in streptomycetes are suggested.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26275-0
2003-07-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491609.html?itemId=/content/journal/micro/10.1099/mic.0.26275-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Av-Gay, Y. & Everett, M. ( 2001; ). The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends Microbiol 8, 238–244.
    [Google Scholar]
  3. Av-Gay, Y., Jamil, S. & Drews, S. J. ( 1999; ). Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infect Immun 67, 5676–5682.
    [Google Scholar]
  4. Bentley, S. D., Chater, K. F., Cerdeno-Tarraga, A. M. & 40 other authors ( 2002; ). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.[CrossRef]
    [Google Scholar]
  5. Boch, J., Nau-Wagner, G., Kneip, S. & Bremer, E. ( 1997; ). Glycine betaine aldehyde dehydrogenase from Bacillus subtilis: characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol 168, 282–289.[CrossRef]
    [Google Scholar]
  6. Castenholz, R. W. & Waterbury, J. B. ( 1989; ). Oxygenic photosynthetic bacteria. Group I. Cyanobacteria. In Bergey's Manual of Systematic Bacteriology, pp. 1710–1789. Edited by J. T. Staley, M. P. Bryant, N. Pfenning & J. G. Holt. Baltimore: Williams and Wilkins.
  7. Chen, G. Q., Cui, C., Mayer, M. L. & Gouaux, E. ( 1999; ). Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821.[CrossRef]
    [Google Scholar]
  8. Cserzo, M., Wallin, E., Simon, I., von Heijne, G. & Elofsson, A. ( 1997; ). Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10, 673–676.[CrossRef]
    [Google Scholar]
  9. Daigle, D. M., McKay, G. A., Thompson, P. R. & Wright, G. D. ( 1999; ). Aminoglycoside antibiotic phosphotransferases are also serine protein kinases. Chem Biol 6, 11–18.[CrossRef]
    [Google Scholar]
  10. Einbond, A. & Sudol, M. ( 1996; ). Towards prediction of cognate complexes between the WW domain and proline-rich ligands. FEBS Lett 384, 1–8.[CrossRef]
    [Google Scholar]
  11. Gauger, A. K. & Goldstein, L. S. ( 1993; ). The Drosophila kinesin light chain. Primary structure and interaction with kinesin heavy chain. J Biol Chem 268, 13657–13666.
    [Google Scholar]
  12. Hardie, G. & Hanks, S. ( 1995; ). The Protein Kinase Factsbook: Protein–Serine Kinases. London: Academic Press.
  13. Hazes, B. ( 1996; ). The (QxW)3 domain: a flexible lectin scaffold. Protein Sci 5, 1490–1501.[CrossRef]
    [Google Scholar]
  14. Henikoff, S., Henikoff, J. G. & Pietrokovski, S. ( 1999; ). Blocks+: a non-redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics 15, 471–479.[CrossRef]
    [Google Scholar]
  15. Hudson, M., Zhang, D. & Nodwell, J. R. ( 2002; ). Membrane association and kinase-like motifs of the RamC protein of Streptomyces coelicolor. J Bacteriol 184, 4920–4924.[CrossRef]
    [Google Scholar]
  16. Hunter, T. & Plowman, G. D. ( 1997; ). The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22, 18–22.
    [Google Scholar]
  17. Ichimura, T., Wakamiya-Tsuruta, A., Itagaki, C., Taoka, M., Hayano, T., Natsume, T. & Isobe, T. ( 2002; ). Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein. Biochemistry 41, 5566–5572.[CrossRef]
    [Google Scholar]
  18. Jones, S. W., Erikson, E., Blenis, J., Maller, J. L. & Erikson, R. L. ( 1988; ). A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc Natl Acad Sci U S A 85, 3377–3381.[CrossRef]
    [Google Scholar]
  19. Joshi, B., Janda, L., Stoytcheva, Z. & Tichy, P. ( 2000; ). PkwA, a WD-repeat protein, is expressed in spore-derived mycelium of Thermomonospora curvata and phosphorylation of its WD domain could act as a molecular switch. Microbiology 146, 3259–3267.
    [Google Scholar]
  20. Kay, B. K., Williamson, M. P. & Sudol, P. ( 2000; ). The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14, 231–241.
    [Google Scholar]
  21. Kennelly, P. J. ( 2002; ). Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiol Lett 206, 1–8.[CrossRef]
    [Google Scholar]
  22. Krupa, A. & Srinivasan, N. ( 2002; ). Lipopolysaccharide phosphorylating enzymes encoded in the genomes of Gram-negative bacteria are related to the eukaryotic protein kinases. Protein Sci 11, 1580–1584.[CrossRef]
    [Google Scholar]
  23. Lee, P. C., Umeyama, T. & Horinouchi, S. ( 2002; ). afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 43, 1413–1430.[CrossRef]
    [Google Scholar]
  24. Leonard, C. J., Aravind, L. & Koonin, E. V. ( 1998; ). Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res 8, 1038–1047.
    [Google Scholar]
  25. Leskiw, B. K., Bibb, M. J. & Chater, K. F. ( 1991; ). The use of a rare codon specifically during development? Mol Microbiol 5, 2861–2867.[CrossRef]
    [Google Scholar]
  26. Loomis, W. F., Shaulsky, G. & Wang, N. ( 1997; ). Histidine kinases in signal transduction of eukaryotes. J Cell Sci 110, 1141–1145.
    [Google Scholar]
  27. Matsumoto, A., Hong, S. K., Ishizuka, H., Horinouchi, S. & Beppu, T. ( 1994; ). Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene 146, 47–56.[CrossRef]
    [Google Scholar]
  28. Mulder, N. J., Apweiler, R., Attwood, T. K & 28 other authors ( 2002; ). InterPro: an integrated documentation resource for protein families, domains and functional sites. Brief Bioinform 3, 225–235.[CrossRef]
    [Google Scholar]
  29. Munoz-Dorado, J., Inouye, S. & Inouye, M. ( 1991; ). A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell 67, 995–1006.[CrossRef]
    [Google Scholar]
  30. Nadvornik, R., Vomastek, T., Janecek, J., Technikova, Z. & Branny, P. ( 1999; ). Pkg2, a novel transmembrane protein Ser/Thr kinase of Streptomyces granaticolor. J Bacteriol 181, 15–23.
    [Google Scholar]
  31. Neu, J. M., MacMillan, S. V., Nodwell, J. R. & Wright, G. D. ( 2002; ). StoPK-1, a serine/threonine protein kinase from the glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009, affects oxidative stress response. Mol Microbiol 44, 417–430.[CrossRef]
    [Google Scholar]
  32. O'Connor, T. J., Kanellis, P. & Nodwell, J. R. ( 2002; ). The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol Microbiol 45, 45–57.[CrossRef]
    [Google Scholar]
  33. Ogawara, H., Aoyagi, N., Watanabe, M. & Urabe, H. ( 1999; ). Sequences and evolutionary analyses of eukaryotic-type protein kinases from Streptomyces coelicolor A3(2). Microbiology 145, 3343–3352.
    [Google Scholar]
  34. Ohmori, M., Ikeuchi, M., Sato, N. & 15 other authors ( 2001; ). Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8, 271–284.[CrossRef]
    [Google Scholar]
  35. Oubrie, A., Rozeboom, H. J., Kalk, K. H., Duine, J. A. & Dijkstra, B. W. ( 1999; ). The 1·7 A crystal structure of the apo form of the soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus reveals a novel internal conserved sequence repeat. J Mol Biol 289, 319–333.[CrossRef]
    [Google Scholar]
  36. Petrickova, K., Tichy, P. & Petricek, M. ( 2000; ). Cloning and characterization of the pknA gene from Streptomyces coelicolor A3(2), coding for the Mn(2+)-dependent protein Ser/Thr kinase. Biochem Biophys Res Commun 279, 942–948.[CrossRef]
    [Google Scholar]
  37. Ponting, C. P., Aravind, L., Schultz, J., Bork, P. & Koonin, E. V. ( 1999; ). Eukaryotic signaling domain homologues in Archea and Bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289, 729–745.[CrossRef]
    [Google Scholar]
  38. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. ( 1998; ). smart, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95, 5857–5864.[CrossRef]
    [Google Scholar]
  39. Shi, L., Potts, M. & Kennelly, P. J. ( 1998; ). The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 22, 229–253.[CrossRef]
    [Google Scholar]
  40. Smith, T. F., Gaitatzes, C., Saxena, K. & Neer, E. J. ( 1999; ). The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24, 181–185.[CrossRef]
    [Google Scholar]
  41. Sonnhammer, E. L., von Heijne, G. & Krogh, A. ( 1998; ). A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6, 175–182.
    [Google Scholar]
  42. Stocchetto, S., Marin, O., Carignani, G. & Pinna, L. A. ( 1997; ). Biochemical evidence that Saccharomyces cerevisiae YGR262c gene, required for normal growth, encodes a novel Ser/Thr-specific protein kinase. FEBS Lett 414, 171–175.[CrossRef]
    [Google Scholar]
  43. Tam, R. & Saier, M. H., Jr ( 1993; ). Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57, 320–346.
    [Google Scholar]
  44. Thibessard, A., Fernandez, A., Gintz, B., Leblond-Bourget, N. & Decaris, B. ( 2002; ). Effects of rodA and pbp2b disruption on cell morphology and oxidative stress response of Streptococcus thermophilus CNRZ368. J Bacteriol 184, 2821–2826.[CrossRef]
    [Google Scholar]
  45. Ueda, K., Umeyama, T., Beppu, T. & Horinouchi, S. ( 1996; ). The aerial mycelium-defective phenotype of Streptomyces griseus resulting from A-factor deficiency is suppressed by a Ser/Thr kinase of S. coelicolor A3(2). Gene 169, 91–95.[CrossRef]
    [Google Scholar]
  46. Umeyama, T. & Horinouchi, S. ( 2001; ). Autophosphorylation of a bacterial serine/threonine kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein. J Bacteriol 183, 5506–5512.[CrossRef]
    [Google Scholar]
  47. Umeyama, T., Lee, P. C., Ueda, K. & Horinouchi, S. ( 1999; ). An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus. Microbiology 145, 2281–2292.
    [Google Scholar]
  48. Umeyama, T., Lee, P. C. & Horinouchi, S. ( 2002; ). Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl Microbiol Biotechnol 59, 419–425.[CrossRef]
    [Google Scholar]
  49. Urabe, H. & Ogawara, H. ( 1995; ). Cloning, sequencing and expression of serine/threonine kinase-encoding genes from Streptomyces coelicolor A3(2). Gene 153, 99–104.[CrossRef]
    [Google Scholar]
  50. Vlahovicek, K., Murvai, J., Barta, E. & Pongor, S. ( 2002; ). The sbase protein domain library, release 9.0: an online resource for protein domain identification. Nucleic Acids Res 30, 273–275.[CrossRef]
    [Google Scholar]
  51. Vomastek, T., Nadvornik, R., Janecek, J., Technikova, Z., Weiser, J. & Branny, P. ( 1998; ). Characterisation of two putative protein Ser/Thr kinases from actinomycete Streptomyces granaticolor both endowed with different properties. Eur J Biochem 257, 55–61.[CrossRef]
    [Google Scholar]
  52. Wright, G. D. ( 1999; ). Aminoglycoside-modifying enzymes. Curr Opin Microbiol 2, 499–503.[CrossRef]
    [Google Scholar]
  53. Yeats, C., Finn, R. D. & Bateman, A. ( 2002; ). The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci 27, 438–440.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26275-0
Loading
/content/journal/micro/10.1099/mic.0.26275-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1609 - 1621

PDF file of multiple sequence alignment of ESTPK catalytic domains from A3(2). The sequences were aligned manually on the basis of the kinase domain consensus. The first line shows the Hardie & Hanks' eukaryotic consensus with essential amino acid residues. A line of each sequence starts with a number indicating the first amino acid position in the relevant protein and ends with the protein name. In case of PK30, both catalytic domains were included, assigned PK30-1 for the N-terminal, and PK30-2 for the C-terminal. The last line represents the consensus amino acid sequence of the ESTPKs; the strength of the consensus (i.e. fraction of sequences conformable with the consensus) is indicated graphically below. Amino acid motifs reflecting the kinase Ser/Thr or Tyr specificity are boxed and shown together with Hardie & Hanks' consensus characteristic of both groups. The Hardie & Hanks' consensus sequences are given according to the following code: uppercase letters, invariant residues; lowercase, nearly invariant residues; o, nonpolar residues; *, polar residues; +, small residues with near neutral polarity. Catalytic subdomains are indicated with roman numerals.

Alignment



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error