1887

Abstract

The increasing number of genes encoding eukaryotic-type Ser/Thr protein kinases (ESTPKs) in prokaryotes, identified mostly due to genome-sequencing projects, suggests that these enzymes play an indispensable role in many bacterial species. Some prokaryotes, such as , carry numerous genes of this type. Though the regulatory pathways have been intensively studied in the organism, experimental proof of the physiological function of ESTPKs is scarce. This review presents a family portrait of the genes identified in the sequence of the A3(2) genome. Based on the available experimental data on ESTPKs in streptomycetes and related bacteria, and on computer-assisted sequence analyses, possible roles of these enzymes in the regulation of cellular processes in streptomycetes are suggested.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26275-0
2003-07-01
2021-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491609.html?itemId=/content/journal/micro/10.1099/mic.0.26275-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410
    [Google Scholar]
  2. Av-Gay Y., Everett M. 2001; The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis . Trends Microbiol 8:238–244
    [Google Scholar]
  3. Av-Gay Y., Jamil S., Drews S. J. 1999; Expression and characterization of the Mycobacterium tuberculosis serine/threonine protein kinase PknB. Infect Immun 67:5676–5682
    [Google Scholar]
  4. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147
    [Google Scholar]
  5. Boch J., Nau-Wagner G., Kneip S., Bremer E. 1997; Glycine betaine aldehyde dehydrogenase from Bacillus subtilis : characterization of an enzyme required for the synthesis of the osmoprotectant glycine betaine. Arch Microbiol 168:282–289
    [Google Scholar]
  6. Castenholz R. W., Waterbury J. B. 1989; Oxygenic photosynthetic bacteria. Group I. Cyanobacteria . In Bergey's Manual of Systematic Bacteriology pp  1710–1789 Edited by Staley J. T., Bryant M. P., Pfenning N., Holt J. G. Baltimore: Williams and Wilkins;
    [Google Scholar]
  7. Chen G. Q., Cui C., Mayer M. L., Gouaux E. 1999; Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402:817–821
    [Google Scholar]
  8. Cserzo M., Wallin E., Simon I., von Heijne G., Elofsson A. 1997; Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng 10:673–676
    [Google Scholar]
  9. Daigle D. M., McKay G. A., Thompson P. R., Wright G. D. 1999; Aminoglycoside antibiotic phosphotransferases are also serine protein kinases. Chem Biol 6:11–18
    [Google Scholar]
  10. Einbond A., Sudol M. 1996; Towards prediction of cognate complexes between the WW domain and proline-rich ligands. FEBS Lett 384:1–8
    [Google Scholar]
  11. Gauger A. K., Goldstein L. S. 1993; The Drosophila kinesin light chain. Primary structure and interaction with kinesin heavy chain. J Biol Chem 268:13657–13666
    [Google Scholar]
  12. Hardie G., Hanks S. 1995 The Protein Kinase Factsbook: Protein–Serine Kinases London: Academic Press;
    [Google Scholar]
  13. Hazes B. 1996; The (QxW)3 domain: a flexible lectin scaffold. Protein Sci 5:1490–1501
    [Google Scholar]
  14. Henikoff S., Henikoff J. G., Pietrokovski S. 1999; Blocks+: a non-redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics 15:471–479
    [Google Scholar]
  15. Hudson M., Zhang D., Nodwell J. R. 2002; Membrane association and kinase-like motifs of the RamC protein of Streptomyces coelicolor. J Bacteriol 184:4920–4924
    [Google Scholar]
  16. Hunter T., Plowman G. D. 1997; The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22:18–22
    [Google Scholar]
  17. Ichimura T., Wakamiya-Tsuruta A., Itagaki C., Taoka M., Hayano T., Natsume T., Isobe T. 2002; Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein. Biochemistry 41:5566–5572
    [Google Scholar]
  18. Jones S. W., Erikson E., Blenis J., Maller J. L., Erikson R. L. 1988; A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc Natl Acad Sci U S A 85:3377–3381
    [Google Scholar]
  19. Joshi B., Janda L., Stoytcheva Z., Tichy P. 2000; PkwA, a WD-repeat protein, is expressed in spore-derived mycelium of Thermomonospora curvata and phosphorylation of its WD domain could act as a molecular switch. Microbiology 146:3259–3267
    [Google Scholar]
  20. Kay B. K., Williamson M. P., Sudol P. 2000; The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J 14:231–241
    [Google Scholar]
  21. Kennelly P. J. 2002; Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiol Lett 206:1–8
    [Google Scholar]
  22. Krupa A., Srinivasan N. 2002; Lipopolysaccharide phosphorylating enzymes encoded in the genomes of Gram-negative bacteria are related to the eukaryotic protein kinases. Protein Sci 11:1580–1584
    [Google Scholar]
  23. Lee P. C., Umeyama T., Horinouchi S. 2002; afsS is a target of AfsR, a transcriptional factor with ATPase activity that globally controls secondary metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 43:1413–1430
    [Google Scholar]
  24. Leonard C. J., Aravind L., Koonin E. V. 1998; Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res 8:1038–1047
    [Google Scholar]
  25. Leskiw B. K., Bibb M. J., Chater K. F. 1991; The use of a rare codon specifically during development?. Mol Microbiol 5:2861–2867
    [Google Scholar]
  26. Loomis W. F., Shaulsky G., Wang N. 1997; Histidine kinases in signal transduction of eukaryotes. J Cell Sci 110:1141–1145
    [Google Scholar]
  27. Matsumoto A., Hong S. K., Ishizuka H., Horinouchi S., Beppu T. 1994; Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene 146:47–56
    [Google Scholar]
  28. Mulder N. J., Apweiler R., Attwood T. K. 28 other authors 2002; InterPro: an integrated documentation resource for protein families, domains and functional sites. Brief Bioinform 3:225–235
    [Google Scholar]
  29. Munoz-Dorado J., Inouye S., Inouye M. 1991; A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus , a gram-negative bacterium. Cell 67:995–1006
    [Google Scholar]
  30. Nadvornik R., Vomastek T., Janecek J., Technikova Z., Branny P. 1999; Pkg2, a novel transmembrane protein Ser/Thr kinase of Streptomyces granaticolor . J Bacteriol 181:15–23
    [Google Scholar]
  31. Neu J. M., MacMillan S. V., Nodwell J. R., Wright G. D. 2002; StoPK-1, a serine/threonine protein kinase from the glycopeptide antibiotic producer Streptomyces toyocaensis NRRL 15009, affects oxidative stress response. Mol Microbiol 44:417–430
    [Google Scholar]
  32. O'Connor T. J., Kanellis P., Nodwell J. R. 2002; The ramC gene is required for morphogenesis in Streptomyces coelicolor and expressed in a cell type-specific manner under the direct control of RamR. Mol Microbiol 45:45–57
    [Google Scholar]
  33. Ogawara H., Aoyagi N., Watanabe M., Urabe H. 1999; Sequences and evolutionary analyses of eukaryotic-type protein kinases from Streptomyces coelicolor A3(2). Microbiology 145:3343–3352
    [Google Scholar]
  34. Ohmori M., Ikeuchi M., Sato N. 15 other authors 2001; Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:271–284
    [Google Scholar]
  35. Oubrie A., Rozeboom H. J., Kalk K. H., Duine J. A., Dijkstra B. W. 1999; The 1·7 A crystal structure of the apo form of the soluble quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus reveals a novel internal conserved sequence repeat. J Mol Biol 289:319–333
    [Google Scholar]
  36. Petrickova K., Tichy P., Petricek M. 2000; Cloning and characterization of the pknA gene from Streptomyces coelicolor A3(2), coding for the Mn(2+)-dependent protein Ser/Thr kinase. Biochem Biophys Res Commun 279:942–948
    [Google Scholar]
  37. Ponting C. P., Aravind L., Schultz J., Bork P., Koonin E. V. 1999; Eukaryotic signaling domain homologues in Archea and Bacteria. Ancient ancestry and horizontal gene transfer. J Mol Biol 289:729–745
    [Google Scholar]
  38. Schultz J., Milpetz F., Bork P., Ponting C. P. 1998; smart, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857–5864
    [Google Scholar]
  39. Shi L., Potts M., Kennelly P. J. 1998; The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 22:229–253
    [Google Scholar]
  40. Smith T. F., Gaitatzes C., Saxena K., Neer E. J. 1999; The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181–185
    [Google Scholar]
  41. Sonnhammer E. L., von Heijne G., Krogh A. 1998; A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182
    [Google Scholar]
  42. Stocchetto S., Marin O., Carignani G., Pinna L. A. 1997; Biochemical evidence that Saccharomyces cerevisiae YGR262c gene, required for normal growth, encodes a novel Ser/Thr-specific protein kinase. FEBS Lett 414:171–175
    [Google Scholar]
  43. Tam R., Saier M. H. Jr 1993; Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Microbiol Rev 57:320–346
    [Google Scholar]
  44. Thibessard A., Fernandez A., Gintz B., Leblond-Bourget N., Decaris B. 2002; Effects of rodA and pbp2b disruption on cell morphology and oxidative stress response of Streptococcus thermophilus CNRZ368. J Bacteriol 184:2821–2826
    [Google Scholar]
  45. Ueda K., Umeyama T., Beppu T., Horinouchi S. 1996; The aerial mycelium-defective phenotype of Streptomyces griseus resulting from A-factor deficiency is suppressed by a Ser/Thr kinase of S. coelicolor A3(2). Gene 169:91–95
    [Google Scholar]
  46. Umeyama T., Horinouchi S. 2001; Autophosphorylation of a bacterial serine/threonine kinase, AfsK, is inhibited by KbpA, an AfsK-binding protein. J Bacteriol 183:5506–5512
    [Google Scholar]
  47. Umeyama T., Lee P. C., Ueda K., Horinouchi S. 1999; An AfsK/AfsR system involved in the response of aerial mycelium formation to glucose in Streptomyces griseus . Microbiology 145:2281–2292
    [Google Scholar]
  48. Umeyama T., Lee P. C., Horinouchi S. 2002; Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces . Appl Microbiol Biotechnol 59:419–425
    [Google Scholar]
  49. Urabe H., Ogawara H. 1995; Cloning, sequencing and expression of serine/threonine kinase-encoding genes from Streptomyces coelicolor A3(2). Gene 153:99–104
    [Google Scholar]
  50. Vlahovicek K., Murvai J., Barta E., Pongor S. 2002; The sbase protein domain library, release 9.0: an online resource for protein domain identification. Nucleic Acids Res 30:273–275
    [Google Scholar]
  51. Vomastek T., Nadvornik R., Janecek J., Technikova Z., Weiser J., Branny P. 1998; Characterisation of two putative protein Ser/Thr kinases from actinomycete Streptomyces granaticolor both endowed with different properties. Eur J Biochem 257:55–61
    [Google Scholar]
  52. Wright G. D. 1999; Aminoglycoside-modifying enzymes. Curr Opin Microbiol 2:499–503
    [Google Scholar]
  53. Yeats C., Finn R. D., Bateman A. 2002; The PASTA domain: a beta-lactam-binding domain. Trends Biochem Sci 27:438–440
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26275-0
Loading
/content/journal/micro/10.1099/mic.0.26275-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error