1887

Abstract

The bacterial strain P4a, isolated from an extreme environment (heavily contaminated with organochlorines, highly alkaline conditions in an aqueous environment), was found to mineralize 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid under alkaline conditions. Screening a genomic DNA library of the alkalitolerant strain for 2,4-D genes revealed the presence of the two 2,4-D gene clusters and , genes being located in the vicinity of each gene cluster. The results showed that the putative genes of the complete 2,4-D degradation pathway are organized in a single genomic unit. Sequence similarities to homologous gene clusters indicate that the individual elements of strain P4a do not share a common origin, but were brought together by recombination events. The entire region is flanked by insertion elements of the IS and IS families, forming a transposon-like structure of about 30 kb, of which 28·4 kb were analysed. This element was shown to be located on the bacterial chromosome. The present study provides the first reported case of a chromosomally located catabolic transposon which carries the genes for the complete 2,4-D degradation pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26260-0
2003-09-01
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492545.html?itemId=/content/journal/micro/10.1099/mic.0.26260-0&mimeType=html&fmt=ahah

References

  1. Alphey L.. 1998; DNA-Sequenzierung Heidelberg, Berlin: Spektrum Akademischer Verlag GmbH;
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  3. Bhat M. A., Tsuda M., Horiike K., Nozaki M., Vaidyanathan C. S., Nakazawa T.. 1994; Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90. Appl Environ Microbiol60:307–312
    [Google Scholar]
  4. Chablain P. A., Zgoda A. L., Sarde C. O., Truffaut N.. 2001; Genetic and molecular organization of the alkylbenzene catabolism operon in the psychrotrophic strain Pseudomonas putida 01G3. Appl Environ Microbiol67:453–458
    [Google Scholar]
  5. Chatterjee D. K., Kellogg S. T., Hamada S., Chakrabarty A. M.. 1981; Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J Bacteriol146:639–646
    [Google Scholar]
  6. Chaudhry G. R., Huang G. H.. 1988; Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J Bacteriol170:3897–3902
    [Google Scholar]
  7. Cowles C. E., Nichols N. N., Harwood C. S.. 2000; BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida . J Bacteriol182:6339–6346
    [Google Scholar]
  8. Deutz W. A., Winson M. K., van Andel J. G., Williams P. A.. 1991; Mathematical analysis of catabolic function loss in a population of Pseudomonas putida mt-2 during non-limited growth on benzoate. J Gen Microbiol137:1363–1368
    [Google Scholar]
  9. Don R. H., Pemberton J. M.. 1981; Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus . J Bacteriol145:681–686
    [Google Scholar]
  10. Don R. H., Pemberton J. M.. 1985; Genetic and physical map of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pJP4. J Bacteriol161:466–468
    [Google Scholar]
  11. Feng X., Ou L. T., Ogram A.. 1997; Cloning and sequence analysis of a novel insertion element from plasmids harbored by the carbofuran-degrading bacterium, Sphingomonas sp. CF06. Plasmid37:169–179
    [Google Scholar]
  12. Fukumori F., Hausinger R. P.. 1993; Alcaligenes eutrophus JMP134 “2,4-dichlorophenoxyacetate monooxygenase” is an α -ketoglutarate-dependent dioxygenase. J Bacteriol175:2083–2086
    [Google Scholar]
  13. Fulthorpe R. R., McGowan C., Maltseva O. V., Holben W. E., Tiedje J. M.. 1995; 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Appl Environ Microbiol61:3274–3281
    [Google Scholar]
  14. Fulthorpe R. R., Rhodes A. N., Tiedje J. M.. 1996; Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations. Appl Environ Microbiol62:1159–1166
    [Google Scholar]
  15. Hickey W. J., Sabat G., Yuroff A. S., Arment A. R., Perez-Lesher J.. 2001; Cloning, nucleotide sequencing, and functional analysis of a novel, mobile cluster of biodegradation genes from Pseudomonas aeruginosa strain JB2. Appl Environ Microbiol67:4603–4609
    [Google Scholar]
  16. Hoffmann D., Müller R. H., Kiesel B., Babel W.. 1996; Isolation and characterization of an alkaliphilic bacterium capable of growing on 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid. Acta Biotechnol16:121–131
    [Google Scholar]
  17. Hoffmann D., Kleinsteuber S., Müller R. H., Babel W.. 2001; Development and application of PCR primers for the detection of the tfd genes in Delftia acidovorans P4a involved in the degradation of 2,4-D. Acta Biotechnol21:321–331
    [Google Scholar]
  18. Hogan D. A., Buckley D. H., Nakatsu C. A., Schmidt T. M., Hausinger R. P.. 1997; Distribution of the tfdA gene in soil bacteria that do not degrade 2,4-dichlorophenoxyacetic acid, 2,4-D. Microb Ecol34:90–96
    [Google Scholar]
  19. Itoh K., Kanda R., Sumita Y., Kim H., Kamagata Y., Suyama K., Yamamoto H., Hausinger R. P., Tiedje J. M.. 2002; tfdA -like genes in 2,4-dichlorophenoxyacetic acid-degrading bacteria belonging to the Bradyrhizobium - Agromonas - Nitrobacter - Afipia cluster in α - Proteobacteria . Appl Environ Microbiol68:3449–3454
    [Google Scholar]
  20. Ka J. O., Tiedje J. M.. 1994; Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer. J Bacteriol176:5284–5289
    [Google Scholar]
  21. Ka J. O., Holben W. E., Tiedje J. M.. 1994; Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils. Appl Environ Microbiol60:1106–1115
    [Google Scholar]
  22. Kamagata Y., Fulthorpe R. R., Tamura K., Takami H., Forney L. J., Tiedje J. M.. 1997; Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol63:2266–2272
    [Google Scholar]
  23. Kaphammer B., Olsen R. H.. 1990; Cloning and characterization of tfdS , the repressor-activator gene of tfdB , from the 2,4-dichlorophenoxyacetic acid catabolic plasmid pJP4. J Bacteriol172:5856–5862
    [Google Scholar]
  24. Kaphammer B., Kukor J. J., Olsen R. H.. 1990; Regulation of tfdCDEF by tfdR of the dichlorophenoxyacetic acid degradation plasmid pJP4. J Bacteriol172:2280–2286
    [Google Scholar]
  25. Kleinsteuber S., Müller R. H., Babel W.. 2001; Expression of the 2,4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolate, Halomonas sp. EF43. Extremophiles5:375–384
    [Google Scholar]
  26. Laemmli C. M., Leveau J. H. J., Zehnder A. J. B., van der Meer J. R.. 2000; Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4. J Bacteriol182:4165–4172
    [Google Scholar]
  27. Leveau J. H. J., van der Meer J. R.. 1996; The tfdR gene product can successfully take over the role of the insertion element-inactivated TfdT protein as a transcriptional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134(pJP4. J Bacteriol178:6824–6832
    [Google Scholar]
  28. Leveau J. H. J., de Vos W. M., van der Meer J. R.. 1994; Analysis of the binding site of the LysR-type transcriptional activator TcbR on the tcbR and tcbC divergent promotor sequences. J Bacteriol176:1850–1856
    [Google Scholar]
  29. Leveau J. H. J., Zehnder A. J. B., van der Meer J. R.. 1998; The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4. J Bacteriol180:2237–2243
    [Google Scholar]
  30. Leveau J. H. J., König F., Füchslin H., Werlen C., van der Meer J. R.. 1999; Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Mol Microbiol33:396–406
    [Google Scholar]
  31. Loffhagen N., Härtig C., Babel W.. 1997; The toxicity of substituted phenolic compounds to a detoxifying and an acetic acid bacterium. Ecotoxicol Environ Saf36:269–274
    [Google Scholar]
  32. Loffhagen N., Härtig C., Babel W.. 2001; Suitability of the trans / cis ratio of unsaturated fatty acids in Pseudomonas putida NCTC 10936 as an indicator of the acute toxicity of chemicals. Ecotoxicol Environ Saf50:65–71
    [Google Scholar]
  33. Mäe A. A., Marits R. O., Ausmess N. R., Kõiv V. M., Heinaru A. L.. 1993; Characterization of a new 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011: physical map and localization of catabolic genes. J Gen Microbiol139:3165–3170
    [Google Scholar]
  34. Maeda K., Nojiri H., Shintani M., Yoshida T., Habe H., Omori T.. 2003; Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn 4676 . J Mol Biol326:21–33
    [Google Scholar]
  35. Mahillon J., Chandler M.. 1998; Insertion sequences. Microbiol Mol Biol Rev62:725–774
    [Google Scholar]
  36. Maltseva O., McGowan C., Fulthorpe R., Oriel P.. 1996; Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology142:1115–1122
    [Google Scholar]
  37. Matheson V. G., Forney L. J., Suwa Y., Nakatsu C. H., Sextone A. J., Holben W. E.. 1996; Evidence for acquisition in nature of a chromosomal 2,4-dichlorophenoxyacetic acid/ α -ketoglutarate dioxygenase gene by different Burkholderia spp. Appl Environ Microbiol62:2457–2463
    [Google Scholar]
  38. McGowan C., Fulthorpe R., Wright A., Tiedje J. M.. 1998; Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders. Appl Environ Microbiol64:4089–4092
    [Google Scholar]
  39. Merlin C., Springael D., Mergeay M., Toussaint A.. 1997; Organization of the bph gene cluster of transposon Tn 4371 , encoding enzymes for the degradation of biphenyl and 4-chlorobiphenyl compounds. Mol Gen Genet253:499–506
    [Google Scholar]
  40. Müller R. H., Müller R. A., Babel W.. 1996; Degradation von Phenoxyalkansäure-Herbiziden durch alkaliphile Mikroorganismen – Dekontamination von belastetem Bauschutt. In Neue Techniken der Bodenreinigung pp 373–384 Edited by Stegmann R. Bonn: Economia Verlag;
  41. Müller R. H., Müller R. A., Jahn Y., Babel W.. 1999a; A biotechnological approach of detoxifying herbicide-contaminated building rubble. In Bioremediation of Nitroaromatic and Haloaromatic Compounds pp 143–148 Edited by Alleman B. C, Leeson A. Columbus, Richland: Battelle Press;
  42. Müller R. H., Jorks S., Kleinsteuber S., Babel W.. 1999b; Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA. Microbiol Res154:241–246
    [Google Scholar]
  43. Müller R. H., Müller R. A., Jahn Y., Babel W.. 2000; Bioremediation of building material contaminated with herbicides. In Remediation of Hazardous Waste Contaminated Soils , 2nd edn. pp 121–131 Edited by Wise D. L, Trantolt D. J, Cichon E. J. New York: Marcel Dekker;
  44. Müller R. H., Kleinsteuber S., Babel W.. 2001; Physiological and genetic characteristics of two bacterial strains utilizing phenoxypropionate and phenoxyacetate herbicides. Microbiol Res156:121–131
    [Google Scholar]
  45. Müller T. A., Werlen C., Spain J., van der Meer J. R.. 2003; Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia . Environ Microbiol5:163–173
    [Google Scholar]
  46. Nakatsu C. H., Wyndham R. C.. 1993; Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60. Appl Environ Microbiol59:3625–3633
    [Google Scholar]
  47. Nakatsu C., Ng J., Singh R., Straus N., Wyndham C.. 1991; Chlorobenzoate catabolic transposon Tn 5271 is a composite class I element with flanking class II insertion sequences. Proc Natl Acad Sci U S A88:8312–8316
    [Google Scholar]
  48. Nakatsu C. H., Straus N. A., Wyndham R. C.. 1995; The nucleotide sequence of the Tn 5271 3-chlorobenzoate 3,4-dioxygenase genes ( cbaAB ) unites the class IA oxygenases in a single lineage. Microbiology141:485–495
    [Google Scholar]
  49. Nakatsu C. H., Providenti M., Wyndham R. C.. 1997; The cis -diol dehydrogenase cbaC gene of Tn 5271 is required for growth on 3-chlorobenzoate but not on 3,4-dichlorobenzoate. Gene196:209–218
    [Google Scholar]
  50. Nojiri H., Sekiguchi H., Maeda K., Urata M., Nakai S., Yoshida T., Habe H., Omori T.. 2001; Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10. J Bacteriol183:3663–3679
    [Google Scholar]
  51. Odgen R.. 1998; The bphS regulatory gene found in Pseudomonas sp. strain IC: a molecular analysis PhD Thesis University of Wales;
  52. Ogawa N., Miyashita K.. 1995; Recombination of a 3-chlorobenzoate catabolic plasmid from Alcaligenes eutrophus NH9 mediated by direct repeat elements. Appl Environ Microbiol61:3788–3795
    [Google Scholar]
  53. Ogawa N., Miyashita K.. 1999; The chlorocatechol-catabolic transposon Tn 5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl Environ Microbiol65:724–731
    [Google Scholar]
  54. Pérez-Pantoja D., Guzmán L., Manzano M., Pieper D. H., González B.. 2000; Role of tfdC ID I E I F I and tfdD II C II E II FIIgene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Appl Environ Microbiol66:1602–1608
    [Google Scholar]
  55. Perkins E. J., Gordon M. P., Caceres O., Lurquin P. F.. 1990; Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol172:2351–2359
    [Google Scholar]
  56. Pieper D. H., Reineke W., Engesser K.-H., Knackmuss H.-J.. 1988; Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP134. Arch Microbiol150:95–102
    [Google Scholar]
  57. Pieper D. H., Stadler-Fritzsche K., Engesser K.-H., Knackmuss H. J.. 1993; Metabolism of 2-chloro-4-methylphenoxyacetate by Alcaligenes eutrophus JMP134. Arch Microbiol160:169–178
    [Google Scholar]
  58. Poh R. P.-C., Smith A. R. W., Bruce I. J.. 2002; Complete characterization of Tn 5530 from Burkholderia cepacia strain 2a(pIJB1) and studies of 2,4-dichlorophenoxyacetate uptake by the organism. Plasmid48:1–12
    [Google Scholar]
  59. Potrawfke T., Timmis K. N., Wittich R. M.. 1998; Degradation of 1,2,3,4-tetrachlorobenzene by Pseudomonas chlororaphis RW71. Appl Environ Microbiol64:3798–3806
    [Google Scholar]
  60. Potrawfke T., Armengaud J., Wittich R. M.. 2001; Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71. J Bacteriol183:997–1011
    [Google Scholar]
  61. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  62. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A74:5463–5467
    [Google Scholar]
  63. Springael D., Kreps S., Mergeay M.. 1993; Identification of a catabolic transposon, Tn 4371 , carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. J Bacteriol175:1674–1681
    [Google Scholar]
  64. Stouthamer A. H., Kooijman S. A.. 1993; Why it pays for bacteria to delete disused DNA and to maintain megaplasmids. Antonie Van Leeuwenhouk63:39–43
    [Google Scholar]
  65. Strauss E. C., Kobori J. A., Siu G., Hood L. E.. 1986; Specific-primer-directed DNA sequencing. Anal Biochem154:353–360
    [Google Scholar]
  66. Streber W. R., Timmis K. N., Zenk M. H.. 1987; Analysis, cloning and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J Bacteriol169:2950–2955
    [Google Scholar]
  67. Suwa Y., Wright A. D., Fukimori F., Nummy K. A., Hausinger R. P., Holben W. E., Forney L. J.. 1996; Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid/ α -ketoglutarate dioxygenase from Burkholderia sp. strain RASC. Appl Environ Microbiol62:2464–2469
    [Google Scholar]
  68. Takemura H., Horinouchi S., Beppu T.. 1991; Novel insertion sequence IS 1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability. J Bacteriol173:7070–7076
    [Google Scholar]
  69. Tamaoka J., Ha D.-M., Komagata K.. 1987; Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas . Int J Syst Bacteriol37:52–59
    [Google Scholar]
  70. Top E. M., Holben W. E., Forney L. J.. 1995; Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol61:1691–1698
    [Google Scholar]
  71. Vallaeys T., Fulthorpe R. R., Wright A. M., Soulas G.. 1996; The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis. FEMS Microbiol Ecol20:163–172
    [Google Scholar]
  72. Vallaeys T., Albino L., Soulas G., Wright A. D., Weightman A. J.. 1998; Isolation and characterization of a stable 2,4-dichlorophenoxyacetic acid degrading bacterium, Variovorax paradoxus , using chemostat culture. Biotechnol Lett20:1073–1076
    [Google Scholar]
  73. Vallaeys T., Courde L., McGowan C., Wright A. D., Fulthorpe R. R.. 1999; Phylogenetic analyses indicate independent recruitment of diverse gene cassettes during assemblage of the 2,4-D catabolic pathway. FEMS Microbiol Ecol28:373–382
    [Google Scholar]
  74. van der Meer J. R.. 1997; Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek71:159–178
    [Google Scholar]
  75. van der Meer J. R., Eggen R. I. L., Zehnder A. J. B., de Vos W. M.. 1991a; Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol173:2425–2434
    [Google Scholar]
  76. van der Meer J. R., Frijters A. C. J., Leveau J. H. J., Eggen R. I. L., Zehnder A. J. B., de Vos W. M.. 1991b; Characterization of the Pseudomonas sp. strain P51 gene tcbR , a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. J Bacteriol173:3700–3708
    [Google Scholar]
  77. van der Meer J. R., Neerven A. R. W., de Vries E. J., de Vos W. M., Zehnder A. J. B.. 1991c; Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J Bacteriol173:6–15
    [Google Scholar]
  78. van der Meer J. R., Zehnder A. J. B., de Vos W. M.. 1991d; Identification of a novel composite transposable element, Tn 5280 , carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J Bacteriol173:7077–7083
    [Google Scholar]
  79. van der Meer J. R., Ravatn R., Sentchilo V.. 2001; The clc element of Pseudomonas sp. B13 and other mobile degradative elements employing phage-like integrases. Arch Microbiol175:79–85
    [Google Scholar]
  80. Vedler E., Kõiv V., Heinaru A.. 2000; Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Gene255:281–288
    [Google Scholar]
  81. Wen A., Fegan M., Hayward C., Chakraborty S., Sly L. I.. 1999; Phylogenetic relationships among members of the Comamonadaceae , and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al ., 1987) gen. nov., comb. nov. Int J Syst Bacteriol49:567–576
    [Google Scholar]
  82. Wyndham R. C., Cashore A. E., Nakatsu C. H., Peel M. C.. 1994a; Catabolic transposons. Biodegradation5:323–342
    [Google Scholar]
  83. Wyndham R. C., Nakatsu C., Peel M., Cashore A., Ng J., Szilagy F.. 1994b; Distribution of the catabolic transposon Tn 5271 in a groundwater bioremediation system. Appl Environ Microbiol60:86–93
    [Google Scholar]
  84. Xia X.-S., Aathithan S., Oswiecimska K., Smith A. R. W., Bruce I. J.. 1998; A novel plasmid pIJB1 possessing a putative 2,4-dichlorophenoxyacetate degradative transposon Tn 5530 in Burkholderia cepacia strain 2a. Plasmid39:154–159
    [Google Scholar]
  85. Zipper C., Bunk M., Zehnder A. J., Kohler H. P.. 1998; Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid] by Sphingomonas herbicidovorans MH. J Bacteriol13:3368–3374
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26260-0
Loading
/content/journal/micro/10.1099/mic.0.26260-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error