1887

Abstract

The bacterial strain P4a, isolated from an extreme environment (heavily contaminated with organochlorines, highly alkaline conditions in an aqueous environment), was found to mineralize 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid under alkaline conditions. Screening a genomic DNA library of the alkalitolerant strain for 2,4-D genes revealed the presence of the two 2,4-D gene clusters and , genes being located in the vicinity of each gene cluster. The results showed that the putative genes of the complete 2,4-D degradation pathway are organized in a single genomic unit. Sequence similarities to homologous gene clusters indicate that the individual elements of strain P4a do not share a common origin, but were brought together by recombination events. The entire region is flanked by insertion elements of the IS and IS families, forming a transposon-like structure of about 30 kb, of which 28·4 kb were analysed. This element was shown to be located on the bacterial chromosome. The present study provides the first reported case of a chromosomally located catabolic transposon which carries the genes for the complete 2,4-D degradation pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26260-0
2003-09-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492545.html?itemId=/content/journal/micro/10.1099/mic.0.26260-0&mimeType=html&fmt=ahah

References

  1. Alphey, L. ( 1998; ). DNA-Sequenzierung. Heidelberg, Berlin: Spektrum Akademischer Verlag GmbH.
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Bhat, M. A., Tsuda, M., Horiike, K., Nozaki, M., Vaidyanathan, C. S. & Nakazawa, T. ( 1994; ). Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90. Appl Environ Microbiol 60, 307–312.
    [Google Scholar]
  4. Chablain, P. A., Zgoda, A. L., Sarde, C. O. & Truffaut, N. ( 2001; ). Genetic and molecular organization of the alkylbenzene catabolism operon in the psychrotrophic strain Pseudomonas putida 01G3. Appl Environ Microbiol 67, 453–458.[CrossRef]
    [Google Scholar]
  5. Chatterjee, D. K., Kellogg, S. T., Hamada, S. & Chakrabarty, A. M. ( 1981; ). Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J Bacteriol 146, 639–646.
    [Google Scholar]
  6. Chaudhry, G. R. & Huang, G. H. ( 1988; ). Isolation and characterization of a new plasmid from a Flavobacterium sp. which carries the genes for degradation of 2,4-dichlorophenoxyacetate. J Bacteriol 170, 3897–3902.
    [Google Scholar]
  7. Cowles, C. E., Nichols, N. N. & Harwood, C. S. ( 2000; ). BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J Bacteriol 182, 6339–6346.[CrossRef]
    [Google Scholar]
  8. Deutz, W. A., Winson, M. K., van Andel, J. G. & Williams, P. A. ( 1991; ). Mathematical analysis of catabolic function loss in a population of Pseudomonas putida mt-2 during non-limited growth on benzoate. J Gen Microbiol 137, 1363–1368.[CrossRef]
    [Google Scholar]
  9. Don, R. H. & Pemberton, J. M. ( 1981; ). Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145, 681–686.
    [Google Scholar]
  10. Don, R. H. & Pemberton, J. M. ( 1985; ). Genetic and physical map of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pJP4. J Bacteriol 161, 466–468.
    [Google Scholar]
  11. Feng, X., Ou, L. T. & Ogram, A. ( 1997; ). Cloning and sequence analysis of a novel insertion element from plasmids harbored by the carbofuran-degrading bacterium, Sphingomonas sp. CF06. Plasmid 37, 169–179.[CrossRef]
    [Google Scholar]
  12. Fukumori, F. & Hausinger, R. P. ( 1993; ). Alcaligenes eutrophus JMP134 “2,4-dichlorophenoxyacetate monooxygenase” is an α-ketoglutarate-dependent dioxygenase. J Bacteriol 175, 2083–2086.
    [Google Scholar]
  13. Fulthorpe, R. R., McGowan, C., Maltseva, O. V., Holben, W. E. & Tiedje, J. M. ( 1995; ). 2,4-Dichlorophenoxyacetic acid-degrading bacteria contain mosaics of catabolic genes. Appl Environ Microbiol 61, 3274–3281.
    [Google Scholar]
  14. Fulthorpe, R. R., Rhodes, A. N. & Tiedje, J. M. ( 1996; ). Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations. Appl Environ Microbiol 62, 1159–1166.
    [Google Scholar]
  15. Hickey, W. J., Sabat, G., Yuroff, A. S., Arment, A. R. & Perez-Lesher, J. ( 2001; ). Cloning, nucleotide sequencing, and functional analysis of a novel, mobile cluster of biodegradation genes from Pseudomonas aeruginosa strain JB2. Appl Environ Microbiol 67, 4603–4609.[CrossRef]
    [Google Scholar]
  16. Hoffmann, D., Müller, R. H., Kiesel, B. & Babel, W. ( 1996; ). Isolation and characterization of an alkaliphilic bacterium capable of growing on 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid. Acta Biotechnol 16, 121–131.[CrossRef]
    [Google Scholar]
  17. Hoffmann, D., Kleinsteuber, S., Müller, R. H. & Babel, W. ( 2001; ). Development and application of PCR primers for the detection of the tfd genes in Delftia acidovorans P4a involved in the degradation of 2,4-D. Acta Biotechnol 21, 321–331.[CrossRef]
    [Google Scholar]
  18. Hogan, D. A., Buckley, D. H., Nakatsu, C. A., Schmidt, T. M. & Hausinger, R. P. ( 1997; ). Distribution of the tfdA gene in soil bacteria that do not degrade 2,4-dichlorophenoxyacetic acid, 2,4-D. Microb Ecol 34, 90–96.[CrossRef]
    [Google Scholar]
  19. Itoh, K., Kanda, R., Sumita, Y., Kim, H., Kamagata, Y., Suyama, K., Yamamoto, H., Hausinger, R. P. & Tiedje, J. M. ( 2002; ). tfdA-like genes in 2,4-dichlorophenoxyacetic acid-degrading bacteria belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in α-Proteobacteria. Appl Environ Microbiol 68, 3449–3454.[CrossRef]
    [Google Scholar]
  20. Ka, J. O. & Tiedje, J. M. ( 1994; ). Integration and excision of a 2,4-dichlorophenoxyacetic acid-degradative plasmid in Alcaligenes paradoxus and evidence of its natural intergeneric transfer. J Bacteriol 176, 5284–5289.
    [Google Scholar]
  21. Ka, J. O., Holben, W. E. & Tiedje, J. M. ( 1994; ). Genetic and phenotypic diversity of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria isolated from 2,4-D-treated field soils. Appl Environ Microbiol 60, 1106–1115.
    [Google Scholar]
  22. Kamagata, Y., Fulthorpe, R. R., Tamura, K., Takami, H., Forney, L. J. & Tiedje, J. M. ( 1997; ). Pristine environments harbor a new group of oligotrophic 2,4-dichlorophenoxyacetic acid-degrading bacteria. Appl Environ Microbiol 63, 2266–2272.
    [Google Scholar]
  23. Kaphammer, B. & Olsen, R. H. ( 1990; ). Cloning and characterization of tfdS, the repressor-activator gene of tfdB, from the 2,4-dichlorophenoxyacetic acid catabolic plasmid pJP4. J Bacteriol 172, 5856–5862.
    [Google Scholar]
  24. Kaphammer, B., Kukor, J. J. & Olsen, R. H. ( 1990; ). Regulation of tfdCDEF by tfdR of the dichlorophenoxyacetic acid degradation plasmid pJP4. J Bacteriol 172, 2280–2286.
    [Google Scholar]
  25. Kleinsteuber, S., Müller, R. H. & Babel, W. ( 2001; ). Expression of the 2,4-D degradative pathway of pJP4 in an alkaliphilic, moderately halophilic soda lake isolate, Halomonas sp. EF43. Extremophiles 5, 375–384.[CrossRef]
    [Google Scholar]
  26. Laemmli, C. M., Leveau, J. H. J., Zehnder, A. J. B. & van der Meer, J. R. ( 2000; ). Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). J Bacteriol 182, 4165–4172.[CrossRef]
    [Google Scholar]
  27. Leveau, J. H. J. & van der Meer, J. R. ( 1996; ). The tfdR gene product can successfully take over the role of the insertion element-inactivated TfdT protein as a transcriptional activator of the tfdCDEF gene cluster, which encodes chlorocatechol degradation in Ralstonia eutropha JMP134(pJP4). J Bacteriol 178, 6824–6832.
    [Google Scholar]
  28. Leveau, J. H. J., de Vos, W. M. & van der Meer, J. R. ( 1994; ). Analysis of the binding site of the LysR-type transcriptional activator TcbR on the tcbR and tcbC divergent promotor sequences. J Bacteriol 176, 1850–1856.
    [Google Scholar]
  29. Leveau, J. H. J., Zehnder, A. J. B. & van der Meer, J. R. ( 1998; ). The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J Bacteriol 180, 2237–2243.
    [Google Scholar]
  30. Leveau, J. H. J., König, F., Füchslin, H., Werlen, C. & van der Meer, J. R. ( 1999; ). Dynamics of multigene expression during catabolic adaptation of Ralstonia eutropha JMP134(pJP4) to the herbicide 2,4-dichlorophenoxyacetate. Mol Microbiol 33, 396–406.[CrossRef]
    [Google Scholar]
  31. Loffhagen, N., Härtig, C. & Babel, W. ( 1997; ). The toxicity of substituted phenolic compounds to a detoxifying and an acetic acid bacterium. Ecotoxicol Environ Saf 36, 269–274.[CrossRef]
    [Google Scholar]
  32. Loffhagen, N., Härtig, C. & Babel, W. ( 2001; ). Suitability of the trans/cis ratio of unsaturated fatty acids in Pseudomonas putida NCTC 10936 as an indicator of the acute toxicity of chemicals. Ecotoxicol Environ Saf 50, 65–71.[CrossRef]
    [Google Scholar]
  33. Mäe, A. A., Marits, R. O., Ausmess, N. R., Kõiv, V. M. & Heinaru, A. L. ( 1993; ). Characterization of a new 2,4-dichlorophenoxyacetic acid degrading plasmid pEST4011: physical map and localization of catabolic genes. J Gen Microbiol 139, 3165–3170.[CrossRef]
    [Google Scholar]
  34. Maeda, K., Nojiri, H., Shintani, M., Yoshida, T., Habe, H. & Omori T. ( 2003; ). Complete nucleotide sequence of carbazole/dioxin-degrading plasmid pCAR1 in Pseudomonas resinovorans strain CA10 indicates its mosaicity and the presence of large catabolic transposon Tn4676. J Mol Biol 326, 21–33.[CrossRef]
    [Google Scholar]
  35. Mahillon, J. & Chandler, M. ( 1998; ). Insertion sequences. Microbiol Mol Biol Rev 62, 725–774.
    [Google Scholar]
  36. Maltseva, O., McGowan, C., Fulthorpe, R. & Oriel, P. ( 1996; ). Degradation of 2,4-dichlorophenoxyacetic acid by haloalkaliphilic bacteria. Microbiology 142, 1115–1122.[CrossRef]
    [Google Scholar]
  37. Matheson, V. G., Forney, L. J., Suwa, Y., Nakatsu, C. H., Sextone, A. J. & Holben, W. E. ( 1996; ). Evidence for acquisition in nature of a chromosomal 2,4-dichlorophenoxyacetic acid/α-ketoglutarate dioxygenase gene by different Burkholderia spp. Appl Environ Microbiol 62, 2457–2463.
    [Google Scholar]
  38. McGowan, C., Fulthorpe, R., Wright, A. & Tiedje, J. M. ( 1998; ). Evidence for interspecies gene transfer in the evolution of 2,4-dichlorophenoxyacetic acid degraders. Appl Environ Microbiol 64, 4089–4092.
    [Google Scholar]
  39. Merlin, C., Springael, D., Mergeay, M. & Toussaint, A. ( 1997; ). Organization of the bph gene cluster of transposon Tn4371, encoding enzymes for the degradation of biphenyl and 4-chlorobiphenyl compounds. Mol Gen Genet 253, 499–506.[CrossRef]
    [Google Scholar]
  40. Müller, R. H., Müller, R. A. & Babel, W. ( 1996; ). Degradation von Phenoxyalkansäure-Herbiziden durch alkaliphile Mikroorganismen – Dekontamination von belastetem Bauschutt. In Neue Techniken der Bodenreinigung, pp. 373–384. Edited by R. Stegmann. Bonn: Economia Verlag.
  41. Müller, R. H., Müller, R. A., Jahn, Y. & Babel, W. ( 1999a; ). A biotechnological approach of detoxifying herbicide-contaminated building rubble. In Bioremediation of Nitroaromatic and Haloaromatic Compounds, pp. 143–148. Edited by B. C. Alleman & A. Leeson. Columbus, Richland: Battelle Press.
  42. Müller, R. H., Jorks, S., Kleinsteuber, S. & Babel, W. ( 1999b; ). Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA. Microbiol Res 154, 241–246.[CrossRef]
    [Google Scholar]
  43. Müller, R. H., Müller, R. A., Jahn, Y. & Babel, W. ( 2000; ). Bioremediation of building material contaminated with herbicides. In Remediation of Hazardous Waste Contaminated Soils, 2nd edn, pp. 121–131. Edited by D. L. Wise, D. J. Trantolt & E. J. Cichon. New York: Marcel Dekker.
  44. Müller, R. H., Kleinsteuber, S. & Babel, W. ( 2001; ). Physiological and genetic characteristics of two bacterial strains utilizing phenoxypropionate and phenoxyacetate herbicides. Microbiol Res 156, 121–131.[CrossRef]
    [Google Scholar]
  45. Müller, T. A., Werlen, C., Spain, J. & van der Meer, J. R. ( 2003; ). Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia. Environ Microbiol 5, 163–173.[CrossRef]
    [Google Scholar]
  46. Nakatsu, C. H. & Wyndham, R. C. ( 1993; ). Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60. Appl Environ Microbiol 59, 3625–3633.
    [Google Scholar]
  47. Nakatsu, C., Ng, J., Singh, R., Straus, N. & Wyndham, C. ( 1991; ). Chlorobenzoate catabolic transposon Tn5271 is a composite class I element with flanking class II insertion sequences. Proc Natl Acad Sci U S A 88, 8312–8316.[CrossRef]
    [Google Scholar]
  48. Nakatsu, C. H., Straus, N. A. & Wyndham, R. C. ( 1995; ). The nucleotide sequence of the Tn5271 3-chlorobenzoate 3,4-dioxygenase genes (cbaAB) unites the class IA oxygenases in a single lineage. Microbiology 141, 485–495.[CrossRef]
    [Google Scholar]
  49. Nakatsu, C. H., Providenti, M. & Wyndham, R. C. ( 1997; ). The cis-diol dehydrogenase cbaC gene of Tn5271 is required for growth on 3-chlorobenzoate but not on 3,4-dichlorobenzoate. Gene 196, 209–218.[CrossRef]
    [Google Scholar]
  50. Nojiri, H., Sekiguchi, H., Maeda, K., Urata, M., Nakai, S., Yoshida, T., Habe, H. & Omori, T. ( 2001; ). Genetic characterization and evolutionary implications of a car gene cluster in the carbazole degrader Pseudomonas sp. strain CA10. J Bacteriol 183, 3663–3679.[CrossRef]
    [Google Scholar]
  51. Odgen, R. ( 1998; ). The bphS regulatory gene found in Pseudomonas sp. strain IC: a molecular analysis. PhD Thesis, University of Wales.
  52. Ogawa, N. & Miyashita, K. ( 1995; ). Recombination of a 3-chlorobenzoate catabolic plasmid from Alcaligenes eutrophus NH9 mediated by direct repeat elements. Appl Environ Microbiol 61, 3788–3795.
    [Google Scholar]
  53. Ogawa, N. & Miyashita, K. ( 1999; ). The chlorocatechol-catabolic transposon Tn5707 of Alcaligenes eutrophus NH9, carrying a gene cluster highly homologous to that in the 1,2,4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51, confers the ability to grow on 3-chlorobenzoate. Appl Environ Microbiol 65, 724–731.
    [Google Scholar]
  54. Pérez-Pantoja, D., Guzmán, L., Manzano, M., Pieper, D. H. & González, B. ( 2000; ). Role of tfdC I D I E I F I and tfdD II C II E II F II gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Appl Environ Microbiol 66, 1602–1608.[CrossRef]
    [Google Scholar]
  55. Perkins, E. J., Gordon, M. P., Caceres, O. & Lurquin, P. F. ( 1990; ). Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172, 2351–2359.
    [Google Scholar]
  56. Pieper, D. H., Reineke, W., Engesser, K.-H. & Knackmuss, H.-J. ( 1988; ). Metabolism of 2,4-dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP134. Arch Microbiol 150, 95–102.[CrossRef]
    [Google Scholar]
  57. Pieper, D. H., Stadler-Fritzsche, K., Engesser, K.-H. & Knackmuss, H. J. ( 1993; ). Metabolism of 2-chloro-4-methylphenoxyacetate by Alcaligenes eutrophus JMP134. Arch Microbiol 160, 169–178.
    [Google Scholar]
  58. Poh, R. P.-C., Smith, A. R. W. & Bruce, I. J. ( 2002; ). Complete characterization of Tn5530 from Burkholderia cepacia strain 2a(pIJB1) and studies of 2,4-dichlorophenoxyacetate uptake by the organism. Plasmid 48, 1–12.[CrossRef]
    [Google Scholar]
  59. Potrawfke, T., Timmis, K. N. & Wittich, R. M. ( 1998; ). Degradation of 1,2,3,4-tetrachlorobenzene by Pseudomonas chlororaphis RW71. Appl Environ Microbiol 64, 3798–3806.
    [Google Scholar]
  60. Potrawfke, T., Armengaud, J. & Wittich, R. M. ( 2001; ). Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71. J Bacteriol 183, 997–1011.[CrossRef]
    [Google Scholar]
  61. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  62. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  63. Springael, D., Kreps, S. & Mergeay, M. ( 1993; ). Identification of a catabolic transposon, Tn4371, carrying biphenyl and 4-chlorobiphenyl degradation genes in Alcaligenes eutrophus A5. J Bacteriol 175, 1674–1681.
    [Google Scholar]
  64. Stouthamer, A. H. & Kooijman, S. A. ( 1993; ). Why it pays for bacteria to delete disused DNA and to maintain megaplasmids. Antonie Van Leeuwenhouk 63, 39–43.[CrossRef]
    [Google Scholar]
  65. Strauss, E. C., Kobori, J. A., Siu, G. & Hood, L. E. ( 1986; ). Specific-primer-directed DNA sequencing. Anal Biochem 154, 353–360.[CrossRef]
    [Google Scholar]
  66. Streber, W. R., Timmis, K. N. & Zenk, M. H. ( 1987; ). Analysis, cloning and high-level expression of 2,4-dichlorophenoxyacetate monooxygenase gene tfdA of Alcaligenes eutrophus JMP134. J Bacteriol 169, 2950–2955.
    [Google Scholar]
  67. Suwa, Y., Wright, A. D., Fukimori, F., Nummy, K. A., Hausinger, R. P., Holben, W. E. & Forney, L. J. ( 1996; ). Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid/α-ketoglutarate dioxygenase from Burkholderia sp. strain RASC. Appl Environ Microbiol 62, 2464–2469.
    [Google Scholar]
  68. Takemura, H., Horinouchi, S. & Beppu, T. ( 1991; ). Novel insertion sequence IS1380 from Acetobacter pasteurianus is involved in loss of ethanol-oxidizing ability. J Bacteriol 173, 7070–7076.
    [Google Scholar]
  69. Tamaoka, J., Ha, D.-M. & Komagata, K. ( 1987; ). Reclassification of Pseudomonas acidovorans den Dooren de Jong 1926 and Pseudomonas testosteroni Marcus and Talalay 1956 as Comamonas acidovorans comb. nov. and Comamonas testosteroni comb. nov., with an emended description of the genus Comamonas. Int J Syst Bacteriol 37, 52–59.[CrossRef]
    [Google Scholar]
  70. Top, E. M., Holben, W. E. & Forney, L. J. ( 1995; ). Characterization of diverse 2,4-dichlorophenoxyacetic acid-degradative plasmids isolated from soil by complementation. Appl Environ Microbiol 61, 1691–1698.
    [Google Scholar]
  71. Vallaeys, T., Fulthorpe, R. R., Wright, A. M. & Soulas, G. ( 1996; ). The metabolic pathway of 2,4-dichlorophenoxyacetic acid degradation involves different families of tfdA and tfdB genes according to PCR-RFLP analysis. FEMS Microbiol Ecol 20, 163–172.[CrossRef]
    [Google Scholar]
  72. Vallaeys, T., Albino, L., Soulas, G., Wright, A. D. & Weightman, A. J. ( 1998; ). Isolation and characterization of a stable 2,4-dichlorophenoxyacetic acid degrading bacterium, Variovorax paradoxus, using chemostat culture. Biotechnol Lett 20, 1073–1076.[CrossRef]
    [Google Scholar]
  73. Vallaeys, T., Courde, L., McGowan, C., Wright, A. D. & Fulthorpe, R. R. ( 1999; ). Phylogenetic analyses indicate independent recruitment of diverse gene cassettes during assemblage of the 2,4-D catabolic pathway. FEMS Microbiol Ecol 28, 373–382.[CrossRef]
    [Google Scholar]
  74. van der Meer, J. R. ( 1997; ). Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Van Leeuwenhoek 71, 159–178.[CrossRef]
    [Google Scholar]
  75. van der Meer, J. R., Eggen, R. I. L., Zehnder, A. J. B. & de Vos, W. M. ( 1991a; ). Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol 173, 2425–2434.
    [Google Scholar]
  76. van der Meer, J. R., Frijters, A. C. J., Leveau, J. H. J., Eggen, R. I. L., Zehnder, A. J. B. & de Vos, W. M. ( 1991b; ). Characterization of the Pseudomonas sp. strain P51 gene tcbR, a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. J Bacteriol 173, 3700–3708.
    [Google Scholar]
  77. van der Meer, J. R., Neerven, A. R. W., de Vries, E. J., de Vos, W. M. & Zehnder, A. J. B. ( 1991c; ). Cloning and characterization of plasmid-encoded genes for the degradation of 1,2-dichloro-, 1,4-dichloro-, and 1,2,4-trichlorobenzene of Pseudomonas sp. strain P51. J Bacteriol 173, 6–15.
    [Google Scholar]
  78. van der Meer, J. R., Zehnder, A. J. B. & de Vos, W. M. ( 1991d; ). Identification of a novel composite transposable element, Tn5280, carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J Bacteriol 173, 7077–7083.
    [Google Scholar]
  79. van der Meer, J. R., Ravatn, R. & Sentchilo, V. ( 2001; ). The clc element of Pseudomonas sp. B13 and other mobile degradative elements employing phage-like integrases. Arch Microbiol 175, 79–85.[CrossRef]
    [Google Scholar]
  80. Vedler, E., Kõiv, V. & Heinaru, A. ( 2000; ). Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Gene 255, 281–288.[CrossRef]
    [Google Scholar]
  81. Wen, A., Fegan, M., Hayward, C., Chakraborty, S. & Sly, L. I. ( 1999; ). Phylogenetic relationships among members of the Comamonadaceae, and description of Delftia acidovorans (den Dooren de Jong 1926 and Tamaoka et al., 1987 ) gen. nov., comb. nov. Int J Syst Bacteriol 49, 567–576.[CrossRef]
    [Google Scholar]
  82. Wyndham, R. C., Cashore, A. E., Nakatsu, C. H. & Peel, M. C. ( 1994a; ). Catabolic transposons. Biodegradation 5, 323–342.[CrossRef]
    [Google Scholar]
  83. Wyndham, R. C., Nakatsu, C., Peel, M., Cashore, A., Ng, J. & Szilagy, F. ( 1994b; ). Distribution of the catabolic transposon Tn5271 in a groundwater bioremediation system. Appl Environ Microbiol 60, 86–93.
    [Google Scholar]
  84. Xia, X.-S., Aathithan, S., Oswiecimska, K., Smith, A. R. W. & Bruce, I. J. ( 1998; ). A novel plasmid pIJB1 possessing a putative 2,4-dichlorophenoxyacetate degradative transposon Tn5530 in Burkholderia cepacia strain 2a. Plasmid 39, 154–159.[CrossRef]
    [Google Scholar]
  85. Zipper, C., Bunk, M., Zehnder, A. J. & Kohler, H. P. ( 1998; ). Enantioselective uptake and degradation of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid] by Sphingomonas herbicidovorans MH. J Bacteriol 13, 3368–3374.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26260-0
Loading
/content/journal/micro/10.1099/mic.0.26260-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error