Induction of L-form-like cell shape change of under microculture conditions Free

Abstract

A remarkable cell shape change was observed in strain 168 under microculture conditions on CI agar medium (Spizizen's minimal medium supplemented with a trace amount of yeast extract and Casamino acids). Cells cultured under a cover glass changed in form from rod-shaped to spherical, large and irregular shapes that closely resembled L-form cells. The cell shape change was observed only with CI medium, not with Spizizen's minimum medium alone or other rich media. The whole-cell protein profile of cells grown under cover glass and cells grown on CI agar plates differed in several respects. Tandem mass analysis of nine gel bands which differed in protein expression between the two conditions showed that proteins related to nitrate respiration and fermentation were expressed in the shape-changed cells grown under cover glass. The cell shape change of CI cultures was repressed when excess KNO was added to the medium. Whole-cell protein analysis of the normal rod-shaped cells grown with 0·1 % KNO and the shape-changed cells grown without KNO revealed that the expression of the branched-chain -keto acid dehydrogenase complex (coded by the gene locus) was elevated in the shape-changed cells. Inactivation of the locus resulted in the repression of cell shape change, and cells in which expression was induced by IPTG did show changes in shape. Transmission electron microscopy of ultrathin sections demonstrated that the shape-changed cells had thin walls, and plasmolysis of cells fixed with a solution including 0·1 M sucrose was observed. Clarifying the mechanism of thinning of the cell wall may lead to the development of a new type of cell wall biosynthetic inhibitor.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26259-0
2003-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492501.html?itemId=/content/journal/micro/10.1099/mic.0.26259-0&mimeType=html&fmt=ahah

References

  1. Abhayawardhane Y., Stewart G. C. 1995; Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J Bacteriol 177:765–773
    [Google Scholar]
  2. Bauer C. E., Elsen S., Bird T. H. 1999; Mechanisms for redox control of gene expression. Annu Rev Microbiol 53:495–523
    [Google Scholar]
  3. Bourdreaux D. P., Freese E. 1981; Sporulation in Bacillus subtilis is independent of membrane fatty acid composition. J Bacteriol 148:480–486
    [Google Scholar]
  4. Burmeister H. R., Hesseltine C. W. 1968; Induction and propagation of a Bacillus subtilis L form in natural and synthetic media. J Bacteriol 95:1857–1861
    [Google Scholar]
  5. Debarbouille M., Gardan R., Arnaud M., Rapoport G. 1999; Role of BkdR, a transcriptional activator of the SigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis . J Bacteriol 181:2059–2066
    [Google Scholar]
  6. Domingues S. R. G. J., Woody H. B. 1997; Bacterial persistence and expression of disease. Clin Microbiol Rev 10:320–344
    [Google Scholar]
  7. Gilpin R. W., Patterson S. K. 1976; Adaptation of a stable L-form of Bacillus subtilis to minimal salts medium without osmotic stabilizers. J Bacteriol 125:845–849
    [Google Scholar]
  8. Gilpin R. W., Young F. E., Chatterjee A. N. 1973; Characterization of a stable L-form of Bacillus subtilis 168. J Bacteriol 113:486–499
    [Google Scholar]
  9. Gilpin R. W., Patterson S. K., Knight R. 1981; Quantitation of Bacillus subtilis L-form growth parameters in batch culture. J Bacteriol 145:651–653
    [Google Scholar]
  10. Henriques A. O., Glaser P., Piggot P. J., Moran C. P. Jr 1998; Control of cell shape and elongation by the rodA gene in Bacillus subtilis . Mol Microbiol 28:235–247
    [Google Scholar]
  11. Hoischen C., Gura K., Luge C., Gumpert J. 1997; Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopicus and its stable protoplast-type L-form. J Bacteriol 179:3430–3436
    [Google Scholar]
  12. Honeyman A. L., Stewart G. C. 1989; The nucleotide sequence of the rodC operon of Bacillus subtilis . Mol Microbiol 3:1257–1268
    [Google Scholar]
  13. Iwano M., Wada M., Morita Y., Shiba H., Takayama S., Isogai A. 1999; X-ray microanalysis of papillar cells and pollen grains in the pollination process in Brassica using variable-pressure scanning electron microscope. J Electron Microsc 48:909–917
    [Google Scholar]
  14. Jones L. J. F., Carballido-Lopez R., Errington J. 2001; Control of cell shape in bacteria: helical, actin-like filaments in Bacillus subtilis . Cell 104:913–922
    [Google Scholar]
  15. Kadoya R., Hassan A. K. M., Kasahara Y., Ogasawara N., Moriya S. 2002; Two separate DNA sequences within oriC participate in accurate chromosome segregation in Bacillus subtilis . Mol Microbiol 45:73–87
    [Google Scholar]
  16. Kaneda T. 1977; Fatty acids of the genus Bacillus : an example of branched-chain preference. Bacteriol Rev 41:391–418
    [Google Scholar]
  17. Kaneda T. 1991; Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302
    [Google Scholar]
  18. Kishi-Nishizawa N., Isogai A., Watanabe M., Hinata K., Yamakawa S., Shojima S., Suzuki A. 1990; Ultrastructure of papillar cells in Brassica campestris revealed by liquid helium rapid-freezing and substitution-fixation method. Plant Cell Physiol 31:1207–1219
    [Google Scholar]
  19. Klienberger E. 1935; The natural occurrence of pleuropneumonia-like organisms in apparent symbiosis with Streptobacillus moniliformis and other bacteria. J Pathol Bacteriol 40:93–105
    [Google Scholar]
  20. Kuwana R., Kasahara Y., Fujibayashi M., Takamatsu H., Ogasawara N., Watabe K. 2002; Proteomics characterization of novel spore proteins of Bacillus subtilis . Microbiology 148:3971–3982
    [Google Scholar]
  21. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  22. Mattman L. H. editor 2001a; Definitions. In Cell Wall Deficient Forms: Stealth Pathogens , 3rd edn. pp 9–12 Boca Raton, FL: CRC Press;
    [Google Scholar]
  23. Mattman L. H. editor 2001b; Public health and nosocomial facets. In Cell Wall Deficient Forms: Stealth Pathogens , 3rd edn. pp 59–68 Boca Raton, FL: CRC Press;
    [Google Scholar]
  24. Mäuel C., Young M., Karamata D. 1989; The essential nature of teichoic acid in Bacillus subtilis as revealed by insertional mutagenesis. Mol Gen Genet 215:388–394
    [Google Scholar]
  25. McCully V., Burns G., Sokatch J. R. 1986; Resolution of branched-chain oxo acid dehydrogenase complex of Pseudomonas aeruginosa . Biochem J 233:737–742
    [Google Scholar]
  26. Morimoto T., Loh P. K., Hirai T., Asai K., Kobayashi K., Moriya S., Ogasawara N. 2002; Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis . Microbiology 148:3539–3552
    [Google Scholar]
  27. Nakano M. M., Hulett F. M. 1997; Adaptation of Bacillus subtilis to oxygen limitation. FEMS Microbiol Lett 157:1–7
    [Google Scholar]
  28. Nakano M. M., Zuber P. 1998; Anaerobic growth of a “strict aerobe” ( Bacillus subtilis ). Annu Rev Microbiol 52:165–190
    [Google Scholar]
  29. Odessay R. 1982; Purification of rat kidney branched-chain oxo acid dehydrogenase complex with endogenous kinase activity. Biochem J 204:353–356
    [Google Scholar]
  30. Paxton R., Harris R. A. 1982; Isolation of rabbit liver branched-chain α -keto acid dehydrogenase and regulation by phosphorylation. J Biol Chem 257:14433–14439
    [Google Scholar]
  31. Pettit F. H., Yeaman S. J., Reed L. J. 1978; Purification and characterization of branched chain alpha-keto acid dehydrogenase complex of bovine kidney. Proc Natl Acad Sci U S A 75:4881–4885
    [Google Scholar]
  32. Piggot P. J., Bylund J. E., Higgins M. L. 1994; Morphogenesis and gene expression during sporulation. In Regulation of Bacterial Differentiation pp 113–137 Edited by Piggot P., Moran C., Youngman P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Sawers G. 1999; The aerobic/anaerobic interface. Curr Opin Microbiol 2:181–187
    [Google Scholar]
  34. Semenza G. L. 1999; Perspectives on oxygen sensing. Cell 98:281–284
    [Google Scholar]
  35. Schall B. F., Marathe G. V., Ghosh B. K. 1981; Stereological analysis of plasmolysis in logarithmic-phase Bacillus licheniformis. J Bacteriol 146:391–397
    [Google Scholar]
  36. Shevchenko A., Wilm M., Vorm O., Mann M. 1996; Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68:850–858
    [Google Scholar]
  37. Sokatch J. R., McCully V., Gebrosky J., Sokatch D. J. 1981; Isolation of a specific lipoamide dehydrogenase for a branched-chain keto acid dehydrogenase from Pseudomonas putida . J Bacteriol 148:639–646
    [Google Scholar]
  38. Wang G. F., Kuriki T., Roy K. L., Kaneda T. 1993; The primary structure of branched-chain α -oxo acid dehydrogenase from Bacillus subtilis and its similarity to other α -oxo acid dehydrogenases. Eur J Biochem 213:1091–1099
    [Google Scholar]
  39. Willecke K., Pardee B. 1971; Fatty acid-requiring mutant of Bacillus subtilis defective in branched chain alpha-keto acid dehydrogenase. J Biol Chem 246:5264–5272
    [Google Scholar]
  40. Wyrick P. B., McConnell M., Rogers H. J. 1973; Genetic transfer of the stable L form state to intact bacterial cells. Nature 244:505–507
    [Google Scholar]
  41. Yates J. R. III, Eng J. K., McCormack A. L., Schieltz D. 1995; Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67:1426–1436
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26259-0
Loading
/content/journal/micro/10.1099/mic.0.26259-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed