1887

Abstract

A transcriptome comparison of a wild-type strain growing under glycolytic or gluconeogenic conditions was performed. In particular, it revealed that the gene, one of the four paralogues putatively encoding a malic enzyme, was more transcribed during gluconeogenesis. Using a reporter fusion to the promoter, it was shown that was specifically induced by external malate and not subject to glucose catabolite repression. Northern analysis confirmed this expression pattern and demonstrated that is cotranscribed with the downstream gene. The gene product was purified and biochemical studies demonstrated its malic enzyme activity, which was 10-fold higher with NAD than with NADP ( / 102 and 10 s mM, respectively). However, physiological tests with single and multiple mutant strains affected in and/or in paralogues showed that does not contribute to efficient utilization of malate for growth. Transposon mutagenesis allowed the identification of the uncharacterized YufL/YufM two-component system as being responsible for the control of expression. Genetic analysis and studies with purified YufM protein showed that YufM binds just upstream of promoter and activates transcription in response to the presence of malate in the extracellular medium, transmitted by YufL. and / could thus be renamed for lic nzyme and / for ate inase sensor/ate response egulator, respectively.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26256-0
2003-09-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492331.html?itemId=/content/journal/micro/10.1099/mic.0.26256-0&mimeType=html&fmt=ahah

References

  1. Anagnostopoulos C., Spizizen J.. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol81:741–746
    [Google Scholar]
  2. Ansanay V., Dequin S., Blondin B., Barre P.. 1993; Cloning, sequence and expression of the gene encoding the malolactic enzyme from Lactococcus lactis . FEBS Lett332:74–80
    [Google Scholar]
  3. Arthurs C. E., Lloyd D.. 1999; Kinetics, stereospecificity, and expression of the malolactic enzyme. Appl Environ Microbiol65:3360–3363
    [Google Scholar]
  4. Asai K., Baik S. H., Kasahara Y., Moriya S., Ogasawara N.. 2000; Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis . Microbiology146:263–271
    [Google Scholar]
  5. Aymerich S., Gonzy-Treboul G., Steinmetz M.. 1986; 5′-noncoding region sacR is the target of all identified regulation affecting the levansucrase gene in Bacillus subtilis . J Bacteriol166:993–998
    [Google Scholar]
  6. Bartolucci S., Rella R., Guagliardi A., Raia C. A., Gambacorta A., De Rosa M., Rossi M.. 1987; Malic enzyme from archaebacterium Sulfolobus solfataricus . Purification, structure, and kinetic properties. J Biol Chem262:7725–7731
    [Google Scholar]
  7. Berka R. M., Hahn J., Albano M., Draskovic I., Persuh M., Cui X., Sloma A., Widner W., Dubnau D.. 2002; Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol Microbiol43:1331–1345
    [Google Scholar]
  8. Bott M., Meyer M., Dimroth P.. 1995; Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae . Mol Microbiol18:533–546
    [Google Scholar]
  9. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  10. Denayrolles M., Aigle M., Lonvaud-Funel A.. 1994; Cloning and sequence analysis of the gene encoding Lactococcus lactis malolactic enzyme: relationships with malic enzymes. FEMS Microbiol Lett116:79–86
    [Google Scholar]
  11. Dervyn E., Suski C., Daniel R., Bruand C., Chapuis J., Errington J., Janniere L., Ehrlich S. D.. 2001; Two essential DNA polymerases at the bacterial replication fork. Science294:1716–1719
    [Google Scholar]
  12. Diesterhaft M. D., Freese E.. 1973; Role of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis . J Biol Chem248:6062–6070
    [Google Scholar]
  13. Doan T., Aymerich S.. 2003; Regulation of the central glycolytic genes in Bacillus subtilis : binding of the repressor CggR to its single DNA target sequence is modulated by fructose-1, 6-bisphosphate. Mol Microbiol47:1709–1721
    [Google Scholar]
  14. Driscoll B. T., Finan T. M.. 1993; NAD+-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation. Mol Microbiol7:865–873
    [Google Scholar]
  15. Driscoll B. T., Finan T. M.. 1996; NADP+-dependent malic enzyme of Rhizobium meliloti . J Bacteriol178:2224–2231
    [Google Scholar]
  16. Driscoll B. T., Finan T. M.. 1997; Properties of NAD+- and NADP+-dependent malic enzymes of Rhizobium ( Sinorhizobium ) meliloti and differential expression of their genes in nitrogen-fixing bacteroids. Microbiology143:489–498
    [Google Scholar]
  17. Dunn M. F.. 1998; Tricarboxylic acid cycle and anaplerotic enzymes in rhizobia. FEMS Microbiol Rev22:105–123
    [Google Scholar]
  18. Ferrari F. A., Ferrari E., Hoch J. A.. 1982; Chromosomal location of a Bacillus subtilis DNA fragment uniquely transcribed by sigma-28-containing RNA polymerase. J Bacteriol152:780–785
    [Google Scholar]
  19. Fillinger S., Boschi-Muller S., Azza S., Dervyn E., Branlant G., Aymerich S.. 2000; Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem275:14031–14037
    [Google Scholar]
  20. Fujita Y., Freese E.. 1981; Isolation and properties of a Bacillus subtilis mutant unable to produce fructose-bisphosphatase. J Bacteriol145:760–767
    [Google Scholar]
  21. Golby P., Davies S., Kelly D. J., Guest J. R., Andrews S. C.. 1999; Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS-DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli . J Bacteriol181:1238–1248
    [Google Scholar]
  22. Groisillier A., Lonvaud-Funel A.. 1999; Comparison of partial malolactic enzyme gene sequences for phylogenetic analysis of some lactic acid bacteria species and relationships with the malic enzyme. Int J Syst Bacteriol49:1417–1428
    [Google Scholar]
  23. Guérout-Fleury A. M., Frandsen N., Stragier P.. 1996; Plasmids for ectopic integration in Bacillus subtilis . Gene180:57–61
    [Google Scholar]
  24. Hansen E. J., Juni E.. 1974; Two routes for synthesis of phosphoenolpyruvate from C4-dicarboxylic acids in Escherichia coli . Biochem Biophys Res Commun59:1204–1210
    [Google Scholar]
  25. Hansen E. J., Juni E.. 1975; Isolation of mutants of Escherichia coli lacking NAD- and NADP-linked malic enzyme. Biochem Biophys Res Commun65:559–566
    [Google Scholar]
  26. Ito M., Guffanti A. A., Wang W., Krulwich T. A.. 2000; Effects of nonpolar mutations in each of the seven Bacillus subtilis mrp genes suggest complex interactions among the gene products in support of Na+ and alkali but not cholate resistance. J Bacteriol182:5663–5670
    [Google Scholar]
  27. Kaspar S., Bott M.. 2002; The sensor kinase CitA (DpiB) of Escherichia coli functions as a high-affinity citrate receptor. Arch Microbiol177:313–321
    [Google Scholar]
  28. Kaspar S., Perozzo R., Reinelt S., Meyer M., Pfister K., Scapozza L., Bott M.. 1999; The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor. Mol Microbiol33:858–872
    [Google Scholar]
  29. Kawai S., Suzuki H., Yamamoto K., Inui M., Yukawa H., Kumagai H.. 1996; Purification and characterization of a malic enzyme from the ruminal bacterium Streptococcus bovis ATCC 15352 and cloning and sequencing of its gene. Appl Environ Microbiol62:2692–2700
    [Google Scholar]
  30. Knichel W., Radler F.. 1982; d-Malic enzyme of Pseudomonas fluorescens . Eur J Biochem123:547–552
    [Google Scholar]
  31. Kobayashi K., Doi S., Negoro S., Urabe I., Okada H.. 1989; Structure and properties of malic enzyme from Bacillus stearothermophilus . J Biol Chem264:3200–3205
    [Google Scholar]
  32. Kobayashi K., Ogura M., Yamaguchi H., Yoshida K., Ogasawara N., Tanaka T., Fujita Y.. 2001; Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J Bacteriol183:7365–7370
    [Google Scholar]
  33. Lamed R., Zeikus J. G.. 1981; Thermostable, ammonium-activated malic enzyme of Clostridium thermocellum . Biochim Biophys Acta660:251–255
    [Google Scholar]
  34. Ludwig H., Homuth G., Schmalisch M., Dyka F. M., Hecker M., Stülke J.. 2001; Transcription of glycolytic genes and operons in Bacillus subtilis : evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol41:409–422
    [Google Scholar]
  35. Ludwig H., Rebhan N., Blencke H. M., Merzbacher M., Stülke J.. 2002; Control of the glycolytic gapA operon by the catabolite control protein A in Bacillus subtilis : a novel mechanism of CcpA-mediated regulation. Mol Microbiol45:543–553
    [Google Scholar]
  36. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  37. Mitsch M. J., Voegele R. T., Cowie A., Osteras M., Finan T. M.. 1998; Chimeric structure of the NAD(P)+- and NADP+-dependent malic enzymes of Rhizobium ( Sinorhizobium ) meliloti . J Biol Chem273:9330–9336
    [Google Scholar]
  38. Moriya S., Tsujikawa E., Hassan A. K., Asai K., Kodama T., Ogasawara N.. 1998; A Bacillus subtilis gene-encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol Microbiol29:179–187
    [Google Scholar]
  39. Murai T., Tokushige M., Nagai J., Katsuki H.. 1971; Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli . Biochem Biophys Res Commun43:875–881
    [Google Scholar]
  40. Ogura M., Yamaguchi H., Yoshida K., Fujita Y., Tanaka T.. 2001; DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B. subtilis two-component regulatory systems. Nucleic Acids Res29:3804–3813
    [Google Scholar]
  41. Ogura M., Yamaguchi H., Kobayashi K., Ogasawara N., Fujita Y., Tanaka T.. 2002; Whole-genome analysis of genes regulated by the Bacillus subtilis competence transcription factor ComK. J Bacteriol184:2344–2351
    [Google Scholar]
  42. Perego M., Hoch J. A.. 2002; Two-component systems, phosphorelays, and regulation of their activities by phosphatases. In Bacillus subtilis and its Closest Relatives: from Genes to Cells pp423–481 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
  43. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Steinmetz M., Richter R.. 1994; Easy cloning of mini-Tn10 insertions from the Bacillus subtilis chromosome. J Bacteriol176:1761–1763
    [Google Scholar]
  45. Stols L., Donnelly M. I.. 1997; Production of succinic acid through overexpression of NAD+-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol63:2695–2701
    [Google Scholar]
  46. Tanaka K., Kobayashi K., Ogasawara N.. 2003; The Bacillus subtilis YufLM two-component system regulates the expression of the malate transporters MaeN (YufR) and YflS, and is essential for utilization of malate in minimal medium. Microbiology149:2317–2329
    [Google Scholar]
  47. Vagner V., Dervyn E., Ehrlich S. D.. 1998; A vector for systematic gene inactivation in Bacillus subtilis . Microbiology144:3097–3104
    [Google Scholar]
  48. van der Rest M. E., Frank C., Molenaar D.. 2000; Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli . J Bacteriol182:6892–6899
    [Google Scholar]
  49. Voegele R. T., Mitsch M. J., Finan T. M.. 1999; Characterization of two members of a novel malic enzyme class. Biochim Biophys Acta1432:275–285
    [Google Scholar]
  50. Wei Y., Guffanti A. A., Ito M., Krulwich T. A.. 2000; Bacillus subtilis YqkI is a novel malic/Na+-lactate antiporter that enhances growth on malate at low protonmotive force. J Biol Chem275:30287–30292
    [Google Scholar]
  51. Yamamoto H., Murata M., Sekiguchi J.. 2000; The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis . Mol Microbiol37:898–912
    [Google Scholar]
  52. Yoshida K., Aoyama D., Ishio I., Shibayama T., Fujita Y.. 1997; Organization and transcription of the myo-inositol operon, iol , of Bacillus subtilis . J Bacteriol179:4591–4598
    [Google Scholar]
  53. Yoshida K., Kobayashi K., Miwa Y.. 9 other authors 2001; Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis . Nucleic Acids Res29:683–692
    [Google Scholar]
  54. Zientz E., Bongaerts J., Unden G.. 1998; Fumarate regulation of gene expression in Escherichia coli by the DcuSR ( dcuSR genes) two-component regulatory system. J Bacteriol180:5421–5425
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26256-0
Loading
/content/journal/micro/10.1099/mic.0.26256-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error