1887

Abstract

Haem is required for optimal growth of the bacterial anaerobe . Previous studies have shown that growth in the presence of haem is coincident with increased yields of ATP from glucose, expression of -type cytochromes and expression of fumarate reductase activity. This paper describes the identification of the genes that encode the cytochrome, iron–sulfur cluster protein and flavoprotein of the fumarate reductase. These genes, , and , respectively, are organized in an operon. Nonpolar, in-frame deletions of and were constructed in the chromosome. These mutant strains had no detectable fumarate reductase or succinate dehydrogenase activity. In addition, the mutant strains showed a threefold increase in generation time, relative to the wild-type strain. Growth of these mutant strains was fully restored to the wild-type rate by the introduction of a replicon containing the entire operon. Growth of the mutant strains was partially restored by supplementing the growth medium with succinate, indicating that the gene products function as a fumarate reductase. During growth on glucose, the mutant strains showed a threefold decrease in cell mass yield, relative to the wild-type strain. These data indicate that fumarate reductase is important for both energy metabolism and succinate biosynthesis in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26247-0
2003-06-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/6/mic1491551.html?itemId=/content/journal/micro/10.1099/mic.0.26247-0&mimeType=html&fmt=ahah

References

  1. Allison M. J., Robinson I. M., Baetz A. L. 1979; Synthesis of α -ketoglutarate by reductive carboxylation of succinate in Veillonella , Selenomonas , and Bacteriodes species. J Bacteriol 140:980–986
    [Google Scholar]
  2. Amann R., Ludwig W., Schleifer K. H. 1988; β -Subunit of ATP-synthase: a useful marker for studying the phylogenetic relationship of eubacteria. J Gen Microbiol 134:2815–2821
    [Google Scholar]
  3. Anthony W. M., Donier R. C., Lee H., Hu S., Ohtsubo E., Davidson N., Broda P. 1974; Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli . J Mol Biol 89:647–650
    [Google Scholar]
  4. Baughn A. D., Malamy M. H. 2002; A mitochondrial-like aconitase in the bacterium Bacteroides fragilis : implications for the evolution of the mitochondrial Krebs cycle. Proc Natl Acad Sci U S A 99:4662–4667
    [Google Scholar]
  5. Bayley D. P., Rocha E. R., Smith C. J. 2000; Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 193:149–154
    [Google Scholar]
  6. Biel S., Simon J., Gross R., Ruiz T., Ruitenberg M., Kröger A. 2002; Reconstitution of coupled fumarate respiration in liposomes by incorporating the electron transport enzymes isolated from Wolinella succinogenes . Eur J Biochem 269:1974–1983
    [Google Scholar]
  7. Bokranz M., Morschel E., Kröger A. 1985; Phosphorylation and phosphate-ATP exchange catalyzed by the ATP synthase isolated from Wolinella succinogenes . Biochim Biophys Acta 810:332–339
    [Google Scholar]
  8. Bonner W. D. 1955; Succinate dehydrogenase. Methods Enzymol 1:722–728
    [Google Scholar]
  9. Boyer H. W. Roulland-Dussoix 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472
    [Google Scholar]
  10. Caldwell D. R., White D. C., Bryant M. P., Doetsch R. N. 1965; Specificity of the heme requirement for growth of Bacteroides ruminicola . J Bacteriol 90:1645–1654
    [Google Scholar]
  11. Clark D. P. 1989; Anaerobic growth defects resulting from gene fusions affecting succinyl-CoA synthetase in Escherichia coli K12. Mol Gen Genet 215:276–280
    [Google Scholar]
  12. Claros M. G., von Heijne G. 1994; TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10:685–686
    [Google Scholar]
  13. Denger K., Schink B. 1992; Energy conservation by succinate decarboxylation in Veilonella parvula . J Gen Microbiol 138:967–971
    [Google Scholar]
  14. Fuller M. D., Caldwell D. R. 1982; Tetrapyrrole utilization by Bacteroides fragilis . Can J Microbiol 28:1304–1310
    [Google Scholar]
  15. Guiney D. G., Hasegawa P., Davis C. E. 1984; Plasmid transfer from Escherichia coli to Bacteroides fragilis : differential expression of antibiotic resistance phenotypes. Proc Natl Acad Sci U S A 81:7203–7206
    [Google Scholar]
  16. Hanahan D., Jessee J., Bloom F. R. 1991; Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113
    [Google Scholar]
  17. Harris M. A., Reddy C. A. 1977; Hydrogenase activity and the H2-fumarate electron transport system in Bacteroides fragilis . J Bacteriol 131:922–928
    [Google Scholar]
  18. Hughes N. J., Clayton C. L., Chalk P. A., Kelly D. J. 1998; Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate : flavodoxin and 2-oxoglutarate : acceptor oxidoreductases which mediate electron transport to NADP. J Bacteriol 180:1119–1128
    [Google Scholar]
  19. Janssen P. 1992; Growth yield increase and ATP formation linked to succinate decarboxylation in Veillonella parvula . Arch Microbiol 157:442–445
    [Google Scholar]
  20. Kilbane J. J. 1981; F factor mobilization of non-conjugative plasmids in Escherichia coli: general mechanisms and a role for site-specific recA-independent recombination at oriV1. PhD thesis Tufts University; Boston:
    [Google Scholar]
  21. Kotarski S. F., Salyers A. A. 1984; Isolation and characterization of outer membranes of Bacteroides thetaiotaomicron grown on different carbohydrates. J Bacteriol 158:102–109
    [Google Scholar]
  22. Lancaster C. R. D., Kröger A., Auer M., Michel H. 1999; Structure of fumarate reductase from Wolinella succinogenes at 2·2 Å resolution. Nature 402:377–385
    [Google Scholar]
  23. Lancaster C. R. D., Groß R., Haas A., Ritter M., Mäntele W., Simon J., Kröger A. 2000; Essential role of Glu-C66 for menaquinol oxidation indicates transmembrane electrochemical potential generation by Wolinella succinogenes fumarate reductase. Proc Natl Acad Sci U S A 97:13051–13056
    [Google Scholar]
  24. Lemos R. S., Fernandes A. S., Pereira M. M., Gomes C. M., Teixeira M. 2002; Quinol : fumarate oxidoreductases and succinate : quinone oxidoreductases: phylogenetic relationships, metal centres and membrane attachment. Biochim Biophys Acta 1553158–170
    [Google Scholar]
  25. Macy J., Probst I., Gottschalk G. 1975; Evidence for cytochrome involvement in fumarate reduction and adenosine 5′-triphosphate synthesis by Bacteroides fragilis grown in the presence of hemin. J Bacteriol 123:436–442
    [Google Scholar]
  26. Mai X., Adams M. W. W. 1996; Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis . J Bacteriol 178:5890–5896
    [Google Scholar]
  27. McKee A. S., McDermid A. S., Baskerville A., Dowsett A. B., Ellwood D. C., Marsh P. D. 1986; Effect of hemin on the physiology and virulence of Bacteroides gingivalis W50. Infect Immun 52:349–355
    [Google Scholar]
  28. Ochoa S. 1955; Malic dehydrogenase from pig heart. Methods Enzymol 1:735–739
    [Google Scholar]
  29. Otto B. R., Sparrius M., Wors D. J., de Graaf F. K., MacLaren D. M. 1994; Utilization of haem from the haptoglobin-haemoglobin complex by Bacteroides fragilis . Microb Pathog 17:137–147
    [Google Scholar]
  30. Pan N., Imlay J. A. 2001; How does oxygen inhibit central metabolism in the obligate anaerobe Bacteroides thetaiotaomicron ?. Mol Microbiol 39:1562–1571
    [Google Scholar]
  31. Reddy C. A., Peck H. D. 1978; Electron transport phosphorylation coupled to fumarate reduction by hydrogen and Mg2+-dependent adenosine triphosphatase activity in extracts of the rumen anaerobe Vibrio succinogenes . J Bacteriol 134:982–991
    [Google Scholar]
  32. Robillard N. J., Tally F. P., Malamy M. H. 1985; Tn4400, a compound transposon isolated from Bacteroides fragilis , functions in Escherichia coli . J Bacteriol 164:1248–1255
    [Google Scholar]
  33. Rocha E. R., Smith A., Smith C. J., Brock J. H. 2001; Growth inhibition of Bacteroides fragilis by hemopexin: proteolytic degradation of hemopexin to overcome heme limitation. FEMS Microbiol Lett 199:73–78
    [Google Scholar]
  34. Rotman G. S., Cooney R., Malamy M. H. 1983; Cloning of the pif region of the F sex factor and identification of a pif protein product. J Bacteriol 155:254–264
    [Google Scholar]
  35. Schnorpfeil M., Janausch I. G., Biel S., Kröger A., Unden G. 2001; Generation of a proton potential by succinate dehydrogenase of Bacillus subtilis functioning as a fumarate reductase. Eur J Biochem 268:3069–3074
    [Google Scholar]
  36. Sperry J. F., Appleman M. D., Wilkins T. D. 1977; Requirement of heme for growth of Bacteroides fragilis . Appl Environ Microbiol 34:386–390
    [Google Scholar]
  37. Tang Y. P. 2000; Identification and characterization of genes in Bacteroides fragilis involved in aerotolerance. PhD thesis Tufts University; Boston:
    [Google Scholar]
  38. Thompson J. S., Malamy M. H. 1990; Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus β -lactamase II. J Bacteriol 172:2584–2593
    [Google Scholar]
  39. Woodcock D. M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S. S., Michael M. Z., Graham M. W. 1989; Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26247-0
Loading
/content/journal/micro/10.1099/mic.0.26247-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error