1887

Abstract

In most bacteria, nitrogen metabolism is tightly regulated and P proteins play a pivotal role in the regulatory processes. possesses two genes ( and ) encoding P-like proteins. The gene forms part of a operon and the gene is located immediately upstream of , encoding a (methyl-) ammonium transporter. Expression of is activated by NtrC under nitrogen-limiting conditions. The synthesis and activity of the molybdenum and iron nitrogenases of are regulated by ammonium on at least three levels, including the transcriptional activation of , and by NtrC, the regulation of NifA and AnfA activity by two different NtrC-independent mechanisms, and the post-translational control of the activity of both nitrogenases by reversible ADP-ribosylation of NifH and AnfH as well as by ADP-ribosylation independent switch-off. Mutational analysis revealed that both P-like proteins are involved in the ammonium regulation of the two nitrogenase systems. A mutation in results in the constitutive expression of and . In addition, the post-translational ammonium inhibition of NifA activity is completely abolished in a double mutant. However, AnfA activity was still suppressed by ammonium in the double mutant. Furthermore, the P-like proteins are involved in ammonium control of nitrogenase activity via ADP-ribosylation and the switch-off response. Remarkably, in the double mutant, all three levels of the ammonium regulation of the molybdenum (but not of the alternative) nitrogenase are completely circumvented, resulting in the synthesis of active molybdenum nitrogenase even in the presence of high concentrations of ammonium.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26235-0
2003-08-01
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492203.html?itemId=/content/journal/micro/10.1099/mic.0.26235-0&mimeType=html&fmt=ahah

References

  1. Arcondéguy T., van Heeswijk W. C., Merrick M. 1999; Studies on the role of GlnK and GlnB in regulating Klebsiella pneumoniae NifL-dependent nitrogen control. FEMS Microbiol Lett 180:263–270
    [Google Scholar]
  2. Arcondéguy T., Jack R., Merrick M. 2001; PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105
    [Google Scholar]
  3. Atkinson M. R., Ninfa A. J. 1998; Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli . Mol Microbiol 29:431–447
    [Google Scholar]
  4. Atkinson M. R., Ninfa A. J. 1999; Characterization of the GlnK protein of Escherichia coli . Mol Microbiol 32:301–313
    [Google Scholar]
  5. Benelli E. M., Souza E. M., Funayama S., Rigo L. U., Pedrosa F. O. 1997; Evidence for two possible glnB -type genes in Herbaspirillum seropedicae . J Bacteriol 179:4623–4626
    [Google Scholar]
  6. Colbeau A., Vignais P. M. 1992; Use of hupS  : :  lacZ gene fusion to study regulation of hydrogenase expression in Rhodobacter capsulatus : stimulation by H2 . J Bacteriol 174:4258–4264
    [Google Scholar]
  7. Cullen P. J., Bowman W. C., Kranz R. G. 1996; In vitro reconstitution and characterization of the Rhodobacter capsulatus NtrB and NtrC two-component system. J Biol Chem 271:6530–6536
    [Google Scholar]
  8. de Zamaroczy M. 1998; Structural homologues PII and PZ of Azospirillum brasilense provide intracellular signalling for selective regulation of various nitrogen-dependent functions. Mol Microbiol 29:449–463
    [Google Scholar]
  9. de Zamaroczy M., Paquelin A., Elmerich C. 1993; Functional organization of the glnB-glnA cluster of Azospirillum brasilense . J Bacteriol 175:2507–2515
    [Google Scholar]
  10. Dischert W., Vignais P. M., Colbeau A. 1999; The synthesis of Rhodobacter capsulatus HupSL hydrogenase is regulated by the two-component HupT/HupR system. Mol Microbiol 34:995–1006
    [Google Scholar]
  11. Drepper T., Groß S., Masepohl B., Klipp W. 2000; Ammonium and molybdenum regulation of the molybdenum nitrogenase and the alternative nitrogenase in Rhodobacter capsulatus . In Nitrogen Fixation: From Molecules to Crop Productivity p 129 Edited by Pedrosa F. O., Hungria M., Yates G., Newton W. E. Dordrecht, Boston, London: Kluwer;
    [Google Scholar]
  12. Foster-Hartnett D., Kranz R. G. 1994; The Rhodobacter capsulatus glnB gene is regulated by NtrC at tandem rpoN -independent promoters. J Bacteriol 176:5171–5176
    [Google Scholar]
  13. Groß S., Drepper T., Masepohl B., Rehman T., Yakunin A. F., Hallenbeck P. C., Klipp W. 2002; Regulatory circuits controlling both nitrogenases in Rhodobacter capsulatus . In Nitrogen Fixation: Global Perspectives p 419 Edited by Finan T. M., O'Brian M. R., Layzell D. B., Vessey J. K., Newton W. New York & Wallingford: CABI;
    [Google Scholar]
  14. Hallenbeck P. C., Yakunin A. F., Drepper T., Gross S., Masepohl B., Klipp W. 2002; Regulation of nitrogenase in the photosynthetic bacterium, Rhodobacter capsulatus . In Nitrogen Fixation: Global Perspectives pp 223–227 Edited by Finan T. M., O'Brian M. R., Layzell D. B., Vessey J. K., Newton W. New York & Wallingford: CABI;
    [Google Scholar]
  15. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  16. He L., Soupene E., Ninfa A., Kustu S. 1998; Physiological role for the GlnK protein of enteric bacteria: relief of NifL inhibition under nitrogen-limiting conditions. J Bacteriol 180:6661–6667
    [Google Scholar]
  17. Holtel A., Merrick M. J. 1989; The Klebsiella pneumoniae PII protein ( glnB gene product) is not absolutely required for nitrogen regulation and is not involved in NifL-mediated nif gene regulation. Mol Gen Genet 217:474–480
    [Google Scholar]
  18. Hübner P., Willison J. C., Vignais P. M., Bickle T. A. 1991; Expression of regulatory nif genes in Rhodobacter capsulatus . J Bacteriol 173:2993–2999
    [Google Scholar]
  19. Hübner P., Masepohl B., Klipp W., Bickle T. A. 1993; nif gene expression studies in Rhodobacter capsulatus : ntrC -independent repression by high ammonium concentrations. Mol Microbiol 10:123–132
    [Google Scholar]
  20. Jack R., de Zamaroczy M., Merrick M. 1999; The signal transduction protein GlnK is required for NifL-dependent nitrogen control of nif gene expression in Klebsiella pneumoniae . J Bacteriol 181:1156–1162
    [Google Scholar]
  21. Klassen G., de Souza E. M., Yates M. G., Rigo L. U., Inaba J., Pedrosa F. O. 2001; Control of nitrogenase reactivation by the GlnZ protein in Azospirillum brasilense . J Bacteriol 183:6710–6713
    [Google Scholar]
  22. Klein G., Klipp W., Jahn A., Steinborn B., Oelze J. 1991; The relationship of biomass, polysaccharide and H2 formation in the wild-type and nifA / nifB mutants of Rhodobacter capsulatus . Arch Microbiol 155:477–482
    [Google Scholar]
  23. Klipp W., Masepohl B., Pühler A. 1988; Identification and mapping of nitrogen fixation genes of Rhodobacter capsulatus : duplication of a nifA-nifB region. J Bacteriol 170:693–699
    [Google Scholar]
  24. Kranz R. G., Foster-Hartnett D. 1990; Transcriptional regulatory cascade of nitrogen-fixation genes in anoxygenic photosynthetic bacteria: oxygen- and nitrogen-responsive factors. Mol Microbiol 4:1793–1800
    [Google Scholar]
  25. Kranz R. G., Pace V. M., Caldicott I. M. 1990; Inactivation, sequence, and lacZ fusion analysis of a regulatory locus required for repression of nitrogen fixation genes in Rhodobacter capsulatus . J Bacteriol 172:53–62
    [Google Scholar]
  26. Kutsche M., Leimkühler S., Angermüller S., Klipp W. 1996; Promoters controlling expression of the alternative nitrogenase and the molybdenum uptake system in Rhodobacter capsulatus are activated by NtrC, independent of σ 54, and repressed by molybdenum. J Bacteriol 178:2010–2017
    [Google Scholar]
  27. Labes M., Pühler A., Simon R. 1990; A new family of RSF1010-derived expression and lacZ -fusion broad-host-range vectors for Gram-negative bacteria. Gene 89:37–46
    [Google Scholar]
  28. Liang Y. Y., de Zamaroczy M., Arsene F., Paquelin A., Elmerich C. 1992; Regulation of nitrogen fixation in Azospirillum brasilense Sp7: involvement of nifA , glnA and glnB gene products. FEMS Microbiol Lett 79:113–120
    [Google Scholar]
  29. Little R., Reyes-Ramirez F., Zhang Y., van Heeswijk W. C., Dixon R. 2000; Signal transduction to the Azotobacter vinelandii NifL-NifA regulatory system is influenced directly by interaction with 2-oxoglutarate and the PII regulatory protein. EMBO J 19:6041–6050
    [Google Scholar]
  30. Little R., Colombo V., Leech A., Dixon R. 2002; Direct interaction of the NifL regulatory protein with the GlnK signal transducer enables the Azotobacter vinelandii NifL-NifA regulatory system to respond to conditions replete for nitrogen. J Biol Chem 277:15472–15481
    [Google Scholar]
  31. Martin D. E., Reinhold-Hurek B. 2002; Distinct roles of PII-like signal transmitter proteins and amtB in regulation of nif gene expression, nitrogenase activity, and posttranslational modification of NifH in Azoarcus sp. strain BH72. J Bacteriol 184:2251–2259
    [Google Scholar]
  32. Martin D. E., Hurek T., Reinhold-Hurek B. 2000; Occurrence of three PII-like signal transmitter proteins in the diazotrophic proteobacterium Azoarcus sp. BH72. Mol Microbiol 38:276–288
    [Google Scholar]
  33. Masepohl B., Klipp W. 1996; Organization and regulation of genes encoding the molybdenum nitrogenase and the alternative nitrogenase in Rhodobacter capsulatus . Arch Microbiol 165:80–90
    [Google Scholar]
  34. Masepohl B., Klipp W., Pühler A. 1988; Genetic characterization and sequence analysis of the duplicated nifA/nifB gene region of Rhodobacter capsulatus . Mol Gen Genet 212:27–37
    [Google Scholar]
  35. Masepohl B., Krey R., Klipp W. 1993; The draTG gene region of Rhodobacter capsulatus is required for post-translational regulation of the molybdenum and the alternative nitrogenase. J Gen Microbiol 139:2667–2675
    [Google Scholar]
  36. Masepohl B., Drepper T., Paschen A., Gross S., Pawlowski A., Raabe K., Riedel K. U., Klipp W. 2002; Regulation of nitrogen fixation in the phototrophic purple bacterium Rhodobacter capsulatus . J Mol Microbiol Biotechnol 4:243–248
    [Google Scholar]
  37. Merrick M. J., Edwards R. A. 1995; Nitrogen control in bacteria. Microbiol Rev 59:604–622
    [Google Scholar]
  38. Michel-Reydellet N., Kaminski P. A. 1999; Azorhizobium caulinodans PII and GlnK proteins control nitrogen fixation and ammonia assimilation. J Bacteriol 181:2655–2658
    [Google Scholar]
  39. Miller J. H. 1972; Assay of β -galactosidase. In Experiments in Molecular Genetics pp 352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Ninfa A. J., Atkinson M. R. 2000; PII signal transduction proteins. Trends Microbiol 8:172–179
    [Google Scholar]
  41. Paschen A., Drepper T., Masepohl B., Klipp W. 2001; Rhodobacter capsulatus nifA mutants mediating nif gene expression in the presence of ammonium. FEMS Microbiol Lett 200:207–213
    [Google Scholar]
  42. Pawlowski A., Riedel K.-U., Klipp W., Dreiskemper P., Groß S., Bierhoff H., Drepper T., Masepohl B. 2003; Yeast two-hybrid studies on interaction of proteins involved in regulation of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus . J Bacteriol in press
    [Google Scholar]
  43. Pierrard J., Ludden P. W., Roberts G. P. 1993; Posttranslational regulation of nitrogenase in Rhodobacter capsulatus : existence of two independent regulatory effects of ammonium. J Bacteriol 175:1358–1366
    [Google Scholar]
  44. Qian Y., Tabita F. R. 1998; Expression of glnB and a glnB -like gene ( glnK ) in a ribulose bisphosphate carboxylase/oxygenase-deficient mutant of Rhodobacter sphaeroides . J Bacteriol 180:4644–4649
    [Google Scholar]
  45. Reyes F., Roldan M. D., Klipp W., Castillo F., Moreno-Vivian C. 1996; Isolation of periplasmatic nitrate reductase genes from Rhodobacter sphaeroides DSM 158: structural and functional differences among prokaryotic nitrate reductases. Mol Microbiol 19:1307–1318
    [Google Scholar]
  46. Reyes-Ramirez F., Little R., Dixon R. 2001; Role of Escherichia coli nitrogen regulatory genes in the nitrogen response of the Azotobacter vinelandii NifL-NifA complex. J Bacteriol 183:3076–3082
    [Google Scholar]
  47. Rudnick P., Kunz C., Gunatilaka M. K., Hines E. R., Kennedy C. 2002; Role of GlnK in NifL-mediated regulation of NifA activity in Azotobacter vinelandii . J Bacteriol 184:812–820
    [Google Scholar]
  48. Schneider K., Müller A., Johannes K.-U., Diemann E., Kottmann J. 1991; Selective removal of molybdenum traces from growth media of N2-fixing bacteria . Anal Biochem. 193292–298
  49. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–791
    [Google Scholar]
  50. Souza E. M., Pedrosa F. O., Drummond M., Rigo L. U., Yates M. G. 1999; Control of Herbaspirillum seropedicae NifA activity by ammonium ions and oxygen. J Bacteriol 181:681–684
    [Google Scholar]
  51. Thomas G., Coutts G., Merrick M. 2000; The glnKamtB operon. Trends Genet 16:11–14
    [Google Scholar]
  52. Toussaint B., de Sury d'Aspremont R., Delic-Attree I., Berchet V., Elsen S., Colbeau A., Dischert W., Lazzaroni Y., Vignais P. M. 1997; The Rhodobacter capsulatus hupSLC promoter: identification of cis-regulatory elements and of trans-activating factors involved in H2 activation of hupSLC transcription. Mol Microbiol 26:927–937
    [Google Scholar]
  53. van Heeswijk W. C., Hoving S., Molenaar D., Stegeman B., Kahn D., Westerhoff H. V. 1996; An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli . Mol Microbiol 21:133–146
    [Google Scholar]
  54. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  55. Wang G., Angermüller S., Klipp W. 1993; Characterization of Rhodobacter capsulatus genes encoding a molybdenum transport system and putative molybdenum-pterin-binding proteins. J Bacteriol 175:3031–3042
    [Google Scholar]
  56. Yakunin A. F., Hallenbeck P. C. 1998; Short-term regulation of nitrogenase activity by NH+ 4 in Rhodobacter capsulatus : multiple in vivo nitrogenase response to NH+ 4 addition. J Bacteriol 180:6392–6395
    [Google Scholar]
  57. Yakunin A. F., Hallenbeck P. C. 2002; AmtB is necessary for NH+ 4-induced nitrogenase switch-off and ADP-ribosylation in Rhodobacter capsulatus . J Bacteriol 184:4081–4088
    [Google Scholar]
  58. Yakunin A. F., Laurinavichene T. V., Tsygankov A. A., Hallenbeck P. C. 1999; The presence of ADP-ribosylated Fe-protein of nitrogenase in Rhodobacter capsulatus is correlated with cellular nitrogen status. J Bacteriol 181:1994–2000
    [Google Scholar]
  59. Zhang Y., Pohlman E. L., Ludden P. W., Roberts G. P. 2000; Mutagenesis and functional characterization of the glnB , glnA , and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum . J Bacteriol 182:983–992
    [Google Scholar]
  60. Zhang Y., Pohlmann E. L., Halbleib C. M., Ludden P. W., Roberts G. P. 2001a; Effect of PII and its homolog GlnK on reversible ADP-ribosylation of dinitrogenase reductase by heterologous expression of the Rhodospirillum rubrum dinitrogenase reductase ADP-ribosyl transferase-dinitrogenase reductase-activating glycohydrolase regulatory system in Klebsiella pneumoniae . J Bacteriol 183:1610–1620
    [Google Scholar]
  61. Zhang Y., Pohlmann E. L., Ludden P. W., Roberts G. P. 2001b; Functional characterization of three GlnB homologs in the photosynthetic bacterium Rhodospirillum rubrum : roles in sensing ammonium and energy status. J Bacteriol 183:6159–6168
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.26235-0
Loading
/content/journal/micro/10.1099/mic.0.26235-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error