1887

Abstract

The persistence of tuberculosis within pulmonary granulomatous lesions is a complex phenomenon, with bacterial survival occurring in a focal region of high immune activity. In part, the survival of the organism may be linked to the ability of the surface glycolipid trehalose 6,6′-dimycolate (TDM; cord factor) to inhibit fusion events between phospholipid vesicles inside the host macrophage. At the same time, TDM contributes to macrophage activation and a cascade of events required for initiation and maintenance of granulomatous responses. This allows increased sequestration of organisms and further survival and persistence within host tissues. Bacterial viability, macrophage cytokine and chemokine response, and intracellular trafficking were investigated in from which TDM had been removed. Removal of surface lipids led to enhanced trafficking of organisms to acidic compartments; reconstitution of delipidated organisms with either pure TDM or the petroleum ether extract containing crude surface lipids restored normal responses. Use of TDM-coated polystyrene beads demonstrated that TDM can mediate intracellular trafficking events, as well as influence macrophage production of pro-inflammatory molecules. Thus, the presence of TDM may be an important determinant for successful infection and survival of within macrophages.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26226-0
2003-08-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492049.html?itemId=/content/journal/micro/10.1099/mic.0.26226-0&mimeType=html&fmt=ahah

References

  1. Actor, J. K., Olsen, M., Jagannath, C. & Hunter, R. L. ( 1999; ). Relationship of survival, organism containment, and granuloma formation in acute murine tuberculosis. J Interferon Cytokine Res 19, 1183–1193.[CrossRef]
    [Google Scholar]
  2. Actor, J. K., Leonard, C. D., Watson, V. E., Wells, A., Jagannath, C., Hunter, R. L., Jr & Dasgupta, A. ( 2000; ). Cytokine mRNA expression and serum cortisol evaluation during murine lung inflammation induced by Mycobacterium tuberculosis. Comb Chem High Throughput Screen 3, 343–351.
    [Google Scholar]
  3. Actor, J. K., Breij, E., Wetsel, R. A., Hoffman, H., Hunter, R. L., Jr & Jagannath, C. ( 2001; ). A role for complement C5 in organism containment and granulomatous response during murine tuberculosis. Scand J Immunol 53, 464–474.[CrossRef]
    [Google Scholar]
  4. Armstrong, J. A. & Hart, P. D. ( 1971; ). Response of cultured macrophages to M. tuberculosis with observations of fusion of lysosomes with phagosomes. J Exp Med 134, 713–740.[CrossRef]
    [Google Scholar]
  5. Astarie-Dequeker, C., N'Diaye, E. N., Le Cabec, V. M., Rittig, G., Prandi, J. & Maridonneau-Parini, I. ( 1999; ). The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun 67, 469–477.
    [Google Scholar]
  6. Barker, L. P., George, K. M., Falkow, S. & Small, P. L. C. ( 1997; ). Differential trafficking of live and dead Mycobacterium marinum organisms in macrophages. Infect Immun 65, 1497–1504.
    [Google Scholar]
  7. Beckman, E. M., Porcelli, S. A., Morita, C. T., Behar, S. M., Furlong, S. T. & Brenner, M. B. ( 1994; ). Recognition of a lipid antigen by CD1-restricted αβ + T cells. Nature 372, 691–694.[CrossRef]
    [Google Scholar]
  8. Behling, C. A., Perez, R. L., Kidd, M. R., Staton, G. W., Jr & Hunter, R. L. ( 1993; ). Induction of pulmonary granulomas, macrophage procoagulant activity, and tumor necrosis factor-α by trehalose glycolipids. Ann Clin Lab Sci 23, 256–266.
    [Google Scholar]
  9. Bekierkunst, A. ( 1968; ). Acute granulomatous response produced in mice by trehalose-6,6′-dimycolate. J Bacteriol 96, 958–961.
    [Google Scholar]
  10. Bloch, H. ( 1950; ). Studies on the virulence of tubercle bacilli: isolation and biological properties of a constituent of virulent organisms. J Exp Med 91, 197–219.[CrossRef]
    [Google Scholar]
  11. Brightbill, H. D., Libraty, D. H., Krutzik, S. R. & 11 other authors ( 1999; ). Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736.[CrossRef]
    [Google Scholar]
  12. Clemens, D. L. & Horwitz, M. A. ( 1995; ). Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181, 257–270.[CrossRef]
    [Google Scholar]
  13. Cooper, A. M., Roberts, A. D., Rhoades, E. R., Callahan, J. E., Getzy, D. M. & Orme, I. M. ( 1995; ). The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. Immunology 84, 423–432.
    [Google Scholar]
  14. Crowe, L. M., Spargo, B. J., Ioneda, T., Beaman, B. L. & Crowe, J. H. ( 1994; ). Interaction of cord factor (α,α′-trehalose-6,6′-dimycolate) with phospholipids. Biochim Biophys Acta 1194, 53–60.[CrossRef]
    [Google Scholar]
  15. Dubnau, E., Chan, J., Raynaud, C., Mohan, V. P., Laneelle, M. A., Yu, K., Ouemard, A., Smith, I. & Daffe, M. ( 2000; ). Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36, 630–637.
    [Google Scholar]
  16. Fratti, R. A., Backer, J. M., Gruenberg, J., Corvera, S. & Deretic, V. ( 2001; ). Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J Cell Biol 154, 631–644.[CrossRef]
    [Google Scholar]
  17. Fratti, R. A., Chua, J. & Deretic, V. ( 2002; ). Cellubrevin alterations and Mycobacterium tuberculosis phagosome maturation arrest. J Biol Chem 277, 17320–17326.[CrossRef]
    [Google Scholar]
  18. Glickman, M. S., Cox, J. S. & Jacobs, W. R., Jr ( 2000; ). A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5, 717–727.[CrossRef]
    [Google Scholar]
  19. Gomes, M. S., Paul, S., Moreira, A. L., Appelberg, R., Rabinovitch, M. & Kaplan, G. ( 1999; ). Survival of Mycobacterium avium and Mycobacterium tuberculosis in acidified vacuoles of murine macrophages. Infect Immun 67, 3199–3206.
    [Google Scholar]
  20. Goren, M. B. ( 1972; ). Immunoreactive substances of mycobacteria. Am Rev Respir Dis 125, 50–69.
    [Google Scholar]
  21. Hamasaki, N., Isowa, K., Kamada, K., Terano, Y., Matsumoto, T., Arakawa, T., Kobayashi, K. & Yano, I. ( 2000; ). In vivo administration of mycobacterial cord factor (trehalose 6,6′-dimycolate) can induce lung and liver granulomas and thymic atrophy in rabbits. Infect Immun 68, 3704–3709.[CrossRef]
    [Google Scholar]
  22. Indrigo, J., Hunter, R. L., Jr & Actor, J. K. ( 2002; ). Influence of trehalose 6,6′-dimycolate (TDM) during mycobacterial infection of bone marrow macrophages. Microbiology 148, 1991–1998.
    [Google Scholar]
  23. Jagannath, C., Hoffman, H., Sepulveda, E., Actor, J. K., Wetsel, R. A. & Hunter, R. L. ( 2000; ). Hypersusceptibility of A/J mice to tuberculosis is in part due to a deficiency of the fifth complement component (C5). Scand J Immunol 52, 369–379.[CrossRef]
    [Google Scholar]
  24. Juffermans, N. P., Florquin, S., Camoglio, L., Verbon, A., Kolk, A. H., Speelman, P., van Deventer, S. J. & van Der Poll, T. ( 2000; ). Interleukin-1 signaling is essential for host defense during murine pulmonary tuberculosis. J Infect Dis 182, 902–908.[CrossRef]
    [Google Scholar]
  25. Kierszenbaum, F. & Waltz, D. R. ( 1981; ). Proliferative responses of central and peripheral rat lymphocytes elicited by cord factor (trehalose 6,6′-dimycolate). Infect Immun 33, 115–119.
    [Google Scholar]
  26. Kindler, V., Sappino, A. P., Grau, G. E., Piguet, P. F. & Vassalli, P. ( 1989; ). The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56, 731–740.[CrossRef]
    [Google Scholar]
  27. Matsunaga, I., Oka, S., Inove, T. & Yano, I. ( 1990; ). Mycolyl glycolipids stimulate macrophages to release chemotactic factors. FEMS Microbiol Lett 67, 49–54.[CrossRef]
    [Google Scholar]
  28. Means, T. K., Wang, S., Lien, E., Yoshimura, A., Golenbock, D. T. & Fenton, M. J. ( 1999; ). Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 163, 3920–3927.
    [Google Scholar]
  29. Moreno, C., Mehlert, A. & Lamb, J. ( 1988; ). The inhibitory effects of mycobacterial lipoarabinomannan and polysaccharides upon polyclonal and monoclonal human T cell proliferation. Clin Exp Immunol 74, 206–210.
    [Google Scholar]
  30. Mosser, D. M. & Edelson, P. J. ( 1987; ). The third component of complement (C3) is responsible for the intracellular survival of Leishmania major. Nature 327, 329–331.
    [Google Scholar]
  31. Oh, Y. K. & Straubinger, R. M. ( 1996; ). Intracellular fate of Mycobacterium avium: use of dual-label spectrofluorometry to investigate the influence of bacterial viability and opsonization on phagosomal pH and phagosome–lysosome interaction. Infect Immun 64, 319–325.
    [Google Scholar]
  32. Perez, R. L., Roman, J., Staton, G. W., Jr & Hunter, R. L. ( 1994; ). Extravascular coagulation and fibrinolysis in murine lung inflammation induced by the mycobacterial cord factor trehalose-6,6′-dimycolate. Am J Respir Crit Care Med 149, 510–518.[CrossRef]
    [Google Scholar]
  33. Perez, R. L., Roman, J., Roser, S., Little, C., Olsen, M., Indrigo, J., Hunter, R. L. & Actor, J. K. ( 2000; ). Cytokine message and protein expression during lung granuloma formation and resolution induced by the mycobacterial cord factor trehalose-6,6′-dimycolate. J Interferon Cytokine Res 20, 795–804.[CrossRef]
    [Google Scholar]
  34. Pieters, J. & Gatfield, J. ( 2002; ). Hijacking the host: survival of pathogenic mycobacteria inside macrophages. Trends Microbiol 10, 142–146.[CrossRef]
    [Google Scholar]
  35. Retzinger, G. S., Meredith, S. C., Takayama, K., Hunter, R. L. & Kezdy, F. J. ( 1981; ). The role of surface in the biological activities of trehalose 6,6′-dimycolate: surface properties and development of a model system. J Biol Chem 256, 8208–8216.
    [Google Scholar]
  36. Roach, D. R., Bean, A. G., Demangel, C., France, M. P., Briscoe, H. & Britton, W. J. ( 2002; ). TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J Immunol 168, 4620–4627.[CrossRef]
    [Google Scholar]
  37. Russell, D. G. ( 2001; ). Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2, 1–9.
    [Google Scholar]
  38. Saita, N., Fujiwara, N., Yano, I., Soejima, K. & Kobayashi, K. ( 2000; ). Trehalose 6,6′-dimycolate (cord factor) of Mycobacterium tuberculosis induces corneal angiogenesis in rats. Infect Immun 68, 5991–5997.[CrossRef]
    [Google Scholar]
  39. Sakaguchi, I., Ikeda, N., Nakayama, M., Kato, Y., Yano, I. & Kaneda, K. ( 2000; ). Trehalose 6,6′-dimycolate (cord factor) enhances neovascularization through vascular endothelial growth factor production by neutrophils and macrophages. Infect Immun 68, 2043–2052.[CrossRef]
    [Google Scholar]
  40. Schlesinger, L. S. ( 1993; ). Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150, 2920–2930.
    [Google Scholar]
  41. Schlesinger, L. S., Bellinger-Kawahara, C. G., Payne, N. R. & Horwitz, M. A. ( 1990; ). Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 144, 2771–2780.
    [Google Scholar]
  42. Sibley, L. D., Hunter, S. W., Brennan, P. J. & Krahenbuhl, J. L. (1988; ). Mycobacterial lipoarabinomannan inhibits gamma interferon-mediated activation of macrophages. Infect Immun 56, 1232–1236.
    [Google Scholar]
  43. Sieling, P. A., Chatterjee, D., Porcelli, S. A. & 7 other authors ( 1995; ). CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269, 227–230.[CrossRef]
    [Google Scholar]
  44. Silva, C. L., Ekizlerian, S. M. & Fazioli, R. A. ( 1985; ). Role of cord factor in the modulation of infection caused by mycobacteria. Am J Pathol 118, 238–247.
    [Google Scholar]
  45. Smith, D., Hansch, H., Bancroft, G. & Ehlers, S. ( 1997; ). T-cell-independent granuloma formation in response to Mycobacterium avium: role of tumour necrosis factor-α and interferon-γ. Immunology 92, 413–421.[CrossRef]
    [Google Scholar]
  46. Spargo, B. J., Crowe, L. M., Ioneda, T., Beaman, B. L. & Crowe, J. H. ( 1991; ). Cord factor (α,α-trehalose 6,6′-dimycolate) inhibits fusion between phospholipid vesicles. Proc Natl Acad Sci U S A 88, 737–740.[CrossRef]
    [Google Scholar]
  47. Sturgill-Koszycki, S., Schlesinger, P. H., Chakraborty, P. & 7 other authors ( 1994; ). Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263, 678–681.[CrossRef]
    [Google Scholar]
  48. Tsuji, S., Matsumoto, M., Takeuchi, O., Akira, S., Azuma, I., Hayashi, A., Toyoshima, K. & Seya, T. ( 2000; ). Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette–Guerin: involvement of toll-like receptors. Infect Immun 68, 6883–6890.[CrossRef]
    [Google Scholar]
  49. Underhill, D. M., Ozinsky, A., Smith, K. D. & Aderem, A. ( 1999; ). Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A 96, 14459–14463.[CrossRef]
    [Google Scholar]
  50. Via, L. E., Deretic, D., Ulmer, R. J., Hibler, N. S., Huber, L. A. & Deretic, V. ( 1997; ). Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J Biol Chem 272, 13326–13331.[CrossRef]
    [Google Scholar]
  51. Via, L. E., Fratti, R. A., McFalone, M., Pagan-Ramos, E., Deretic, D. & Deretic, V. ( 1998; ). Effects of cytokines on mycobacterial phagosome maturation. J Cell Sci 111, 897–905.
    [Google Scholar]
  52. Watson, V. E., Hill, L. L., Owen-Schaub, L. B., Davis, D. W., McConkey, D. J., Jagannath, C., Hunter, R. L., Jr & Actor, J. K. ( 2000; ). Apoptosis in Mycobacterium tuberculosis infection in mice exhibiting varied immunopathology. J Pathol 190, 211–220.[CrossRef]
    [Google Scholar]
  53. Wright, S. D. & Silverstein, S. C. ( 1983; ). Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med 158, 2016–2023.[CrossRef]
    [Google Scholar]
  54. Xu, S., Cooper, A., Sturgill-Koszycki, S., van Heyningen, T., Chatterjee, D., Orme, I., Allen, P. & Russell, D. G. ( 1994; ). Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol 153, 2568–2578.
    [Google Scholar]
  55. Yarkoni, E. & Rapp, H. J. ( 1977; ). Granuloma formation in lungs of mice after intravenous administration of emulsified trehalose-6,6′-dimycolate (cord factor): reaction intensity depends on size distribution of the oil droplets. Infect Immun 18, 552–554.
    [Google Scholar]
  56. Yarkoni, E. & Rapp, H. J. ( 1978; ). Toxicity of emulsified trehalose-6,6′-dimycolate (cord factor) in mice depends on size distribution of mineral oil droplets. Infect Immun 20, 856–860.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26226-0
Loading
/content/journal/micro/10.1099/mic.0.26226-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error