1887

Abstract

Copper ions induce expression of the operon encoding a metallochaperone, CopZ, and a CPx-type ATPase efflux protein, CopA. The promoter region contains an inverted repeat sequence similar to that recognized by the mercury-sensing MerR protein. To investigate the possible involvement of MerR homologues in regulation, null mutations were engineered affecting each of four putative MerR-type regulators: , , and . Two of these genes affected copper regulation. Mutation of (hereafter renamed ) dramatically reduced copper induction of , and purified CueR bound with high affinity to the promoter region. These results suggest that CueR is a direct regulator of transcription that mediates copper induction. Surprisingly, a mutation also reduced copper induction of . Sequence analysis suggested that was cotranscribed with , encoding a putative multidrug efflux protein. The operon is autoregulated: a mutation derepressed the promoter and purified YfmP bound the promoter region, but not the promoter region. Since the mutant strain was predicted to express elevated levels of the YfmO efflux pump, it was hypothesized that copper efflux might be responsible for the reduced induction. Consistent with this model, in a double mutant copper induction of was normal. The results demonstrate the direct regulation of the copper efflux system by CueR, and indirect regulation by a putative multidrug efflux system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26225-0
2003-12-01
2020-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/12/mic1493413.html?itemId=/content/journal/micro/10.1099/mic.0.26225-0&mimeType=html&fmt=ahah

References

  1. Adaikkalam V., Swarup S.. 2002; Molecular characterization of an operon, cueAR , encoding a putative P1-type ATPase and a MerR-type regulatory protein involved in copper homeostasis in Pseudomonas putida . Microbiology148:2857–2867
    [Google Scholar]
  2. Ansari A. Z., Chael M. L., O'Halloran T. V.. 1992; Allosteric underwinding of DNA is a critical step in positive control of transcription by Hg-MerR. Nature355:87–89
    [Google Scholar]
  3. Ansari A. Z., Bradner J. E., O'Halloran T. V.. 1995; DNA-bend modulation in a repressor-to-activator switching mechanism. Nature374:371–375
    [Google Scholar]
  4. Banci L., Rosato A.. 2003; Structural genomics of proteins involved in copper homeostasis. Acc Chem Res36:215–221
    [Google Scholar]
  5. Banci L., Bertini I., Del Conte R., Markey J., Ruiz-Duenas F. J.. 2001; Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry40:15660–15668
    [Google Scholar]
  6. Banci L., Bertini I., Ciofi-Baffoni S., D'Onofrio M., Gonnelli L., Marhuenda-Egea F. C., Ruiz-Duenas F. J.. 2002; Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. J Mol Biol317:415–429
    [Google Scholar]
  7. Banci L., Bertini I., Ciofi-Baffoni S., Del Conte R., Gonnelli L.. 2003; Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis . Biochemistry42:1939–1949
    [Google Scholar]
  8. Borremans B., Hobman J. L., Provoost A., Brown N. L., van Der Lelie D.. 2001; Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol183:5651–5658
    [Google Scholar]
  9. Brocklehurst K. R., Hobman J. L., Lawley B., Blank L., Marshall S. J., Brown N. L., Morby A. P.. 1999; ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli . Mol Microbiol31:893–902
    [Google Scholar]
  10. Brocklehurst K. R., Megit S. J., Morby A. P.. 2003; Characterisation of CadR from Pseudomonas aeruginosa : a Cd(II)-responsive MerR homologue. Biochem Biophys Res Commun308:234–239
    [Google Scholar]
  11. Brown N. L., Stoyanov J. V., Kidd S. P., Hobman J. L.. 2003; The MerR family of transcriptional regulators. FEMS Microbiol Rev27:145–163
    [Google Scholar]
  12. Bush A. I., Tanzi R. E.. 2002; The galvanization of beta-amyloid in Alzheimer's disease. Proc Natl Acad Sci U S A99:7317–7319
    [Google Scholar]
  13. Cavet J. S., Meng W., Pennella M. A., Appelhoff R. J., Giedroc D. P., Robinson N. J.. 2002; A nickel-cobalt-sensing ArsR-SmtB family repressor. Contributions of cytosol and effector binding sites to metal selectivity. J Biol Chem277:38441–38448
    [Google Scholar]
  14. Cobine P. A., George G. N., Jones C. E., Wickramasinghe W. A., Solioz M., Dameron C. T.. 2002; Copper transfer from the Cu(I) chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry41:5822–5829
    [Google Scholar]
  15. Cutting S. M., Vander Horn P. B.. 1990; Genetic analysis. In Molecular Biological Methods for Bacillus pp27–74 Edited by Harwood C. R., Cutting S. M.. Chichester: Wiley;
  16. Finney L. A., O'Halloran T. V.. 2003; Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science300:931–936
    [Google Scholar]
  17. Fisher S. H.. 1999; Regulation of nitrogen metabolism in Bacillus subtilis : vive la difference!. Mol Microbiol32:223–232
    [Google Scholar]
  18. Franke S., Grass G., Rensing C., Nies D. H.. 2003; Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli . J Bacteriol185:3804–3812
    [Google Scholar]
  19. Gaballa A., Helmann J. D.. 2003; Bacillus subtilis CPx-type ATPases: characterization of Cd, Zn, Co and Cu efflux systems. Biometals16:497–505
    [Google Scholar]
  20. Guedon E., Helmann J. D.. 2003; Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol Microbiol48:495–506
    [Google Scholar]
  21. Guérout-Fleury A.-M., Shazand K., Frandsen N., Stragier P.. 1995; Antibiotic-resistance cassettes for Bacillus subtilis . Gene167:335–336
    [Google Scholar]
  22. Hantke K.. 2001; Iron and metal regulation in bacteria. Curr Opin Microbiol4:172–177
    [Google Scholar]
  23. Harris E. D.. 2000; Cellular copper transport and metabolism. Annu Rev Nutr20:291–310
    [Google Scholar]
  24. Heldwein E. E., Brennan R. G.. 2001; Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature409:378–382
    [Google Scholar]
  25. Helmann J. D., Wang Y., Mahler I., Walsh C. T.. 1989; Homologous metalloregulatory proteins from both gram-positive and gram-negative bacteria control transcription of mercury resistance operons. J Bacteriol171:222–229
    [Google Scholar]
  26. Herbig A., Helmann J. D.. 2002; Metal ion uptake and oxidative stress. In Bacillus subtilis and its Closest Relatives pp405–414 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
  27. Imlay J. A.. 2002; How oxygen damages microbes: oxygen tolerance and obligate anaerobiosis. Adv Microb Physiol46:111–153
    [Google Scholar]
  28. Khan S., Brocklehurst K. R., Jones G. W., Morby A. P.. 2002; The functional analysis of directed amino-acid alterations in ZntR from Escherichia coli . Biochem Biophys Res Commun299:438–445
    [Google Scholar]
  29. Kim J. S., Kim M. H., Joe M. H., Song S. S., Lee I. S., Choi S. Y.. 2002; The sctR of Salmonella enterica serovar Typhimurium encoding a homologue of MerR protein is involved in the copper-responsive regulation of cuiD . FEMS Microbiol Lett210:99–103
    [Google Scholar]
  30. Lee S. W., Glickmann E., Cooksey D. A.. 2001; Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl Environ Microbiol67:1437–1444
    [Google Scholar]
  31. Llanos R. M., Mercer J. F.. 2002; The molecular basis of copper homeostasis copper-related disorders. DNA Cell Biol21:259–270
    [Google Scholar]
  32. Mata M. T., Baquero F., Perez-Diaz J. C.. 2000; A multidrug efflux transporter in Listeria monocytogenes . FEMS Microbiol Lett187:185–188
    [Google Scholar]
  33. Miller J. H.. 1972; Experiments in Molecular Genetics pp352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  34. Misra T. K., Brown N. L., Fritzinger D. C., Pridmore R. D., Barnes W. M., Haberstroh L., Silver S.. 1984; Mercuric ion-resistance operons of plasmid R100 and transposon Tn 501 : the beginning of the operon including the regulatory region and the first two structural genes. Proc Natl Acad Sci U S A81:5975–5979
    [Google Scholar]
  35. Outten C. E., Outten F. W., O'Halloran T. V.. 1999; DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli . J Biol Chem274:37517–37524
    [Google Scholar]
  36. Outten F. W., Outten C. E., Hale J., O'Halloran T. V.. 2000; Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR . J Biol Chem275:31024–31029
    [Google Scholar]
  37. Outten F. W., Huffman D. L., Hale J. A., O'Halloran T. V.. 2001; The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli . J Biol Chem276:30670–30677
    [Google Scholar]
  38. Petersen C., Møller L. B.. 2000; Control of copper homeostasis in Escherichia coli by a P-type ATPase, CopA, and a MerR-like transcriptional activator, CopR. Gene261:289–298
    [Google Scholar]
  39. Radford D. S., Kihlken M. A., Borrelly G. P., Harwood C. R., Le Brun N. E., Cavet J. S.. 2003; CopZ from Bacillus subtilis interacts in vivo with a copper exporting CPx-type ATPase CopA. FEMS Microbiol Lett220:105–112
    [Google Scholar]
  40. Reeve W. G., Tiwari R. P., Kale N. B., Dilworth M. J., Glenn A. R.. 2002; ActP controls copper homeostasis in Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti preventing low pH-induced copper toxicity. Mol Microbiol43:981–991
    [Google Scholar]
  41. Rensing C., Grass G.. 2003; Escherichia coli mechanism of copper homeostasis in a changing environment. FEMS Microbiol Rev27:197–213
    [Google Scholar]
  42. Rogers E. E., Guerinot M. L.. 2002; FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis . Plant Cell14:1787–1799
    [Google Scholar]
  43. Rutherford J. C., Cavet J. S., Robinson N. J.. 1999; Cobalt-dependent transcriptional switching by a dual-effector MerR-like protein regulates a cobalt-exporting variant CPx-type ATPase. J Biol Chem274:25827–25832
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  45. Schumacher M. A., Brennan R. G.. 2002; Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Mol Microbiol45:885–893
    [Google Scholar]
  46. Slack F. J., Mueller J. P., Sonenshein A. L.. 1993; Mutations that relieve nutritional repression of the Bacillus subtilis dipeptide permease operon. J Bacteriol175:4605–4614
    [Google Scholar]
  47. Solioz M., Stoyanov J. V.. 2003; Copper homeostasis in Enterococcus hirae . FEMS Microbiol Rev27:183–195
    [Google Scholar]
  48. Stoyanov J. V., Brown N. L.. 2003; The Escherichia coli copper-responsive copA promoter is activated by gold. J Biol Chem278:1407–1410
    [Google Scholar]
  49. Stoyanov J. V., Hobman J. L., Brown N. L.. 2001; CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol39:502–511
    [Google Scholar]
  50. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W.. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol185:60–89
    [Google Scholar]
  51. Touati D.. 2000; Iron and oxidative stress in bacteria. Arch Biochem Biophys373:1–6
    [Google Scholar]
  52. Vander Horn P. B., Zahler S. A.. 1992; Cloning and nucleotide sequence of the leucyl-tRNA synthetase gene of Bacillus subtilis . J Bacteriol174:3928–3935
    [Google Scholar]
  53. Wach A.. 1996; PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae . Yeast12:259–265
    [Google Scholar]
  54. Wang W., Guffanti A. A., Wei Y., Ito M., Krulwich T. A.. 2000; Two types of Bacillus subtilis tetA(L) deletion strains reveal the physiological importance of TetA(L)in K+ acquisition as well as in Na+, alkali, and tetracycline resistance. J Bacteriol182:2088–2095
    [Google Scholar]
  55. Zuber P., Losick R.. 1987; Role of AbrB in Spo0A- and Spo0B-dependent utilization of a sporulation promoter in Bacillus subtilis . J Bacteriol169:2223–2230
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26225-0
Loading
/content/journal/micro/10.1099/mic.0.26225-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error