1887

Abstract

Deficiencies in the MutS protein disrupt methyl-directed mismatch repair (MMR), generating a mutator phenotype typified by high mutation rates and promiscuous recombination. How such deficiencies might arise in the natural environment was determined by analysing pathogenic strains of . Quantitative Western immunoblotting showed that the amount of MutS in a wild-type strain of the enterohaemorrhagic pathogen O157 : H7 decreased about 26-fold in stationary-phase cells as compared with the amount present during exponential-phase growth. The depletion of MutS in O157 : H7 is significantly greater than that observed for a laboratory-attenuated K-12 strain. In the case of stable mutators, defects in strains identified among natural isolates were analysed, including two O157 : H7 strains, a diarrhoeagenic O55 : H7 strain, and a uropathogenic strain from the reference (ECOR) collection. No MutS could be detected in the four strains by Western immunoblot analyses. RNase T2 protection assays showed that the strains were either deficient in transcripts or produced transcripts truncated at the 3′ end. Nucleotide sequence analysis revealed extensive deletions in the region of three strains, ranging from 7·5 to 17·3 kb relative to K-12 sequence, while the ECOR mutator contained a premature stop codon in addition to other nucleotide changes in the coding sequence. These results provide insights into the status of the gene and its product in pathogenic strains of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26213-0
2003-05-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491323.html?itemId=/content/journal/micro/10.1099/mic.0.26213-0&mimeType=html&fmt=ahah

References

  1. Bachmann B. J.. others 1987; Derivatives and genotypes of some mutant derivatives of Escherichia coli K-12. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 1190–1219 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Blattner F. R., Plunkett G. 3rd, Bloch C. A.. 14 other authors 1997; The complete genome sequence of Escherichia coli K-12. Science277:1453–1462
    [Google Scholar]
  3. Boe L., Danielsen M., Knudsen S., Petersen J. B., Maymann J., Jensen P. R.. 2000; The frequency of mutators in populations of Escherichia coli . Mutat Res448:47–55
    [Google Scholar]
  4. Brown E. W., LeClerc J. E., Kotewicz M. L., Cebula T. A.. 2001a; The three R's of bacterial evolution: how replication, repair, and recombination frame the origin of species. Environ Mol Mutagen38:248–260
    [Google Scholar]
  5. Brown E. W., LeClerc J. E., Li B., Payne W. L., Cebula T. A.. 2001b; Phylogenetic evidence for horizontal transfer of mutS alleles among naturally occurring Escherichia coli strains. J Bacteriol183:1631–1644
    [Google Scholar]
  6. Cebula T. A., Koch W. H.. 1990; Analysis of spontaneous and psoralen-induced Salmonella typhimurium hisG46 revertants by oligodeoxyribonucleotide colony hybridization: use of psoralens to cross-link probes to target sequences. Mutat Res229:79–87
    [Google Scholar]
  7. Cebula T. A., LeClerc J. E.. others 2000; DNA repair and mutators: effects on antigenic variation and virulence of bacterial pathogens. In Virulence Mechanisms of Bacterial Pathogens , 3rd edn. pp 143–159 Edited by Brogden K. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Chao L., Cox E. C.. 1983; Competition between high and low mutating strains of Escherichia coli . Evolution37:125–134
    [Google Scholar]
  9. Cox E. C.. 1976; Bacterial mutator genes and the control of spontaneous mutation. Annu Rev Genet10:135–156
    [Google Scholar]
  10. Cox E. C., Gibson T. C.. 1974; Selection for high mutation rates in chemostats. Genetics77:169–184
    [Google Scholar]
  11. Culham D. E., Wood J. M.. 2000; An Escherichia coli reference collection group B2- and uropathogen-associated polymorphism in the rpoSmutS region of the E. coli chromosome. J Bacteriol182:6272–6276
    [Google Scholar]
  12. Denamur E., Lecointre G., Darlu P.. 9 other authors 2000; Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell103:711–721
    [Google Scholar]
  13. Denamur E., Bonacorsi S., Giraud A.. 8 other authors 2002; High frequency of mutator strains among human uropathogenic Escherichia coli isolates. J Bacteriol184:605–609
    [Google Scholar]
  14. Drake J. W.. 1991; A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A88:7160–7164
    [Google Scholar]
  15. Feng G., Winkler M. E.. 1995; Single-step purification of His6-MutH, His6-MutL, and His6-MutS repair proteins of Escherichia coli K-12. Biotechniques19:956–965
    [Google Scholar]
  16. Feng G., Tsui H.-C. T., Winkler M. E.. 1996; Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K-12 cells. J Bacteriol178:2388–2396
    [Google Scholar]
  17. Gibson T. C., Scheppe M. L., Cox E. C.. 1970; Fitness of an Escherichia coli mutator gene. Science169:686–688
    [Google Scholar]
  18. Gross M. D., Siegel E. C.. 1981; Incidence of mutator strains in Escherichia coli and coliforms in nature. Mutat Res91:107–110
    [Google Scholar]
  19. Harris R. S., Feng G., Ross K. J., Gidhu R., Thulin C., Longerich S., Szigety S. K., Winkler M. E., Rosenberg S. M.. 1997; Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev11:2426–2437
    [Google Scholar]
  20. Horst J.-P., Wu T., Marinus M. G.. 1999; Escherichia coli mutator genes. Trends Microbiol7:29–36
    [Google Scholar]
  21. Jyssum K.. 1960; Observations on two types of genetic instability in Escherichia coli . Acta Pathol Microbiol Scand48:113–120
    [Google Scholar]
  22. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  23. LeClerc J. E., Cebula T. A.. 1997; Hypermutability and homeologous recombination: ingredients for rapid evolution. Bull Inst Pasteur95:97–106
    [Google Scholar]
  24. LeClerc J. E., Li B., Payne W. L., Cebula T. A.. 1996; High mutation frequencies among Escherichia coli and Salmonella pathogens. Science274:1208–1211
    [Google Scholar]
  25. LeClerc J. E., Payne W. L., Kupchella E., Cebula T. A.. 1998; Detection of mutator subpopulations in Salmonella typhimurium LT2 by reversion of his alleles. Mutat Res400:89–97
    [Google Scholar]
  26. LeClerc J. E., Li B., Payne W. L., Cebula T. A.. 1999; Promiscuous origin of a chimeric sequence in the Escherichia coli O157 : H7 genome. J Bacteriol181:7614–7617
    [Google Scholar]
  27. Mao E. F., Lane L., Lee L., Miller J. H.. 1997; Proliferation of mutators in a cell population. J Bacteriol179:417–422
    [Google Scholar]
  28. Matic I., Radman M., Taddei F., Picard B., Doit C., Bingen E., Denamur E., Elison J.. 1997; Highly variable mutation rates in commensal and pathogenic Escherichia coli . Science277:1833–1834
    [Google Scholar]
  29. Médigue C., Rouxel T., Vigier P., Hénaut A., Danchin A.. 1991; Evidence of horizontal gene transfer in Escherichia coli speciation. J Mol Biol222:851–856
    [Google Scholar]
  30. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Miller J. H.. 1998; Mutators in Escherichia coli . Mutat Res409:99–106
    [Google Scholar]
  32. Modrich P., Lahue R.. 1996; Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem65:101–133
    [Google Scholar]
  33. Negri M. C., Morosini M. I., Baquero M. R., Campo Rd. R., Blazquez J., Baquero F.. 2002; Very low cefotaxime concentrations select for hypermutable Streptococcus pneumoniae populations. Antimicrob Agents Chemother46:528–530
    [Google Scholar]
  34. Nestmann E. R., Hill R. F.. 1973; Population changes in continuously growing mutator cultures of Escherichia coli . Genetics73:Suppl 7341–44
    [Google Scholar]
  35. Ochman H., Selander R. K.. 1984; Standard reference strains of Escherichia coli from natural populations. J Bacteriol157:690–693
    [Google Scholar]
  36. Ochman H., Elwyn S., Moran N. A.. 1999; Calibrating bacterial evolution. Proc Natl Acad Sci U S A56:12638–12643
    [Google Scholar]
  37. Oliver A., Canton R., Campo P., Baquero F., Blazquez J.. 2000; High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science288:1251–1254
    [Google Scholar]
  38. Oliver A., Baquero F., Blazquez J.. 2002; The mismatch repair system ( mutS , mutL and uvrD genes) in Pseudomonas aeruginosa : molecular characterization of naturally occurring mutants. Mol Microbiol43:1641–1650
    [Google Scholar]
  39. Reid S. D., Herbelin J., Bumbaugh A. C., Selander R. K., Whittam T. S.. 2000; Parallel evolution of virulence in pathogenic Escherichia coli . Nature406:64–67
    [Google Scholar]
  40. Richardson A. R., Yu Z., Popovic T., Stojiljkovic I.. 2002; Mutator clones of Neisseria meningitidis in epidemic serogroup A disease. Proc Natl Acad Sci U S A99:6103–6107
    [Google Scholar]
  41. Schaaper R. M., Radman M.. 1989; The extreme mutator effect of Escherichia coli mutD5 results from saturation of mismatch repair by excessive DNA replication errors. EMBO J8:3511–3516
    [Google Scholar]
  42. Shaver A. C., Dombrowski P. G., Sweeney J. Y., Treis T., Zappala R. M., Sniegowski P. D.. 2002; Fitness evolution and the rise of mutator alleles in experimental Escherichia coli populations. Genetics162:557–566
    [Google Scholar]
  43. Sniegowski P. D., Gerrish P. J., Lenski R. E.. 1997; Evolution of high mutation rates in experimental populations of E. coli . Nature387:703–705
    [Google Scholar]
  44. Sutton A., Buencamino R., Eisenstark A.. 2000; rpoS mutants in archival cultures of Salmonella enterica serovar typhimurium. J Bacteriol182:4375–4379
    [Google Scholar]
  45. Tröbner W., Piechocki R.. 1981; Competition growth between Escherichia coli mutL and mut + in continuously growing cultures. Z Allg Mikrobiol21:347–349
    [Google Scholar]
  46. Tröbner W., Piechocki R.. 1984; Selection against hypermutability in Escherichia coli during long-term evolution. Mol Gen Genet198:177–178
    [Google Scholar]
  47. Tsui H.-C. T., Pease A. J., Koehler T. M., Winkler M. E.. 1994; Detection and quantitation of RNA transcribed from bacterial chromosomes. Methods Mol Genet3:179–204
    [Google Scholar]
  48. Tsui H.-C. T., Feng G., Winkler M. E.. 1997; Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12. J Bacteriol179:7476–7487
    [Google Scholar]
  49. Whittam T. S., Wolfe M. L., Wachsmuth I. K., Ørskov F., Ørskov I., Wilson R. A.. 1993; Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun61:1619–1629
    [Google Scholar]
  50. Zambrino M., Siegele D., Almiron A., Kolter R.. 1993; Microbial competition: Escherichia coli mutants that take over stationary phase cultures. Science259:1757–1760
    [Google Scholar]
  51. Zhao J., Winkler M. E.. 2000; Reduction of GC→TA transversion mutation by overexpression of MutS in Escherichia coli K-12. J Bacteriol182:5025–5028
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26213-0
Loading
/content/journal/micro/10.1099/mic.0.26213-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error