1887

Abstract

Three new genes ( , and ) were isolated from a region of the ISP5230 chromosome at the left-hand end of the cluster for jadomycin B (JdB) biosynthesis. The deduced amino acid sequence of showed strong similarity to gene products associated in several streptomycetes with -butyrolactone autoregulators controlling morphological differentiation and secondary metabolism. Examination of JadW for conserved domains detected a repeat sequence characteristic of proteins in the AfsA regulatory family. Insertional inactivation of reduced the growth rate of cultures in aerated liquid media containing complex nitrogen sources and altered growth morphology in minimal medium. It also affected sporulation on agar media. Cultures of -disrupted mutants grown under conditions supporting biosynthesis of JdB or chloramphenicol by the wild-type strain failed to produce either of the antibiotics. Complementing the disrupted strain by transformation with pJV435, containing a cloned copy of the gene, improved sporulation and restored antibiotic biosynthesis in transformants to titres close to those of the wild-type similarly transformed with pJV435 as a control. The results are consistent with a role for in regulating morphological and metabolic differentiation. Further sequence analysis of , which functions with in stress-induced activation of JdB biosynthesis, indicated that this gene encodes a -butyrolactone receptor homologue. The growth-rate-sensitive phenotype of the -disrupted mutant, and the proximity of to indicate that this region of the gene cluster contains a regulatory mechanism incorporating -butyrolactone signalling and sensitivity to environmental stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26209-0
2003-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1491991.html?itemId=/content/journal/micro/10.1099/mic.0.26209-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Ando N., Matsumori N., Sakuda S., Beppu T., Horinouchi S. 1997; Involvement of AfsA in A-factor biosynthesis as a key enzyme. J Antibiot 50:847–852
    [Google Scholar]
  3. Bate N., Butler A. R., Gandecha A. R., Cundliffe E. 1999; Multiple regulatory genes in the tylosin biosynthetic cluster of Streptomyces fradiae . Chem Biol 6:617–624
    [Google Scholar]
  4. Bentley S. D., Chater K. F., Cerdeno-Tarraga A. M. 40 other authors 2002; Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147
    [Google Scholar]
  5. Brown M. P., Aidoo K. A., Vining L. C. 1996; A role for pabAB , a p -aminobenzoate synthase gene of Streptomyces venezuelae ISP5230 in chloramphenicol biosynthesis. Microbiology 142:1345–1355
    [Google Scholar]
  6. Chang Z., Sun Y., He J., Vining L. C. 2001; p -Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae : gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Microbiology 147:2113–2126
    [Google Scholar]
  7. Chater K. F., Bibb M. J. 1997; Regulation of bacterial antibiotic production. Biotechnology 7:57–105
    [Google Scholar]
  8. Doull J., Ahmed Z., Stuttard C., Vining L. C. 1985; Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis. J Gen Microbiol 131:97–104
    [Google Scholar]
  9. Doull J. L., Ayer S. W., Singh A. K., Thibault P. 1993; Production of a novel polyketide antibiotic, jadomycin B, by Streptomyces venezuelae following heat shock. J Antibiot 46:849–871
    [Google Scholar]
  10. Doull J. L., Singh A. K., Hoare M., Ayer S. W. 1994; Conditions for the production of jadomycin B by Streptomyces venezuelae ISP5230: effects of heat shock, ethanol treatment and phage infection. J Ind Microbiol 13:120–125
    [Google Scholar]
  11. Efremenkova O. V., Anisova L. V., Bartoshevich Iu. E. 1985; Regulators of actinomycete differentiation. Antibiot Med Biotekhnol 9:687–707
    [Google Scholar]
  12. Flett F., Mersinias V., Smith C. P. 1997; High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229
    [Google Scholar]
  13. Folcher M., Gaillard H., Nguyen L. T., Nguyen K. T., Lacroix P., Bahas-Jacques N., Rinkel M., Thompson C. J. 2001; Pleiotropic functions of a Streptomyces pristinae-spiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306
    [Google Scholar]
  14. Gräfe U., Schade W., Eritt I., Fleck W. F., Radics L. 1982; A new inducer of anthracycline biosynthesis from Streptomyces viridochromogenes . J Antibiot 35:1721–1723
    [Google Scholar]
  15. Groß F., Lewis A. L., Piraee M., van Pée K.-H., Vining L. C., White R. L. 2002; Isolation of 3- O -acetylchloramphenicol: a possible intermediate in chloramphenicol biosynthesis. Bioorg Med Chem Lett 12:283–286
    [Google Scholar]
  16. Han L., Yang K., Ramalingam E., Mosher R. H., Vining L. C. 1994; Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 140:3379–3389
    [Google Scholar]
  17. Han L., Yang K., Kulowski K., Wendt-Pienkowski E., Hutchinson C. R., Vining L. C. 2000; An acyl-coenzyme A carboxylase-encoding gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP 5230. Microbiology 146:903–910
    [Google Scholar]
  18. Hashimoto K., Nihira T., Sakuda S., Yamada Y. 1992; IM-2, a butyrolactone autoregulator, induces production of several nucleoside antibiotics in Streptomyces sp. FRI-5. J Ferment Bioeng 73:449–455
    [Google Scholar]
  19. He J., Magarvey N., Piraee M., Vining L. C. 2001; The gene cluster for chloramphenicol biosynthesis includes novel shikimate pathway homologues and a monomodular nonribosomal peptide synthetase gene. Microbiology 147:2817–2829
    [Google Scholar]
  20. Hopwood D. A. 1967; Genetic analysis and genomic structure in Streptomyces coelicolor . Bacteriol Rev 31:373–403
    [Google Scholar]
  21. Hopwood D. A., Bibb M. J., Chater K. F. 7 other authors 1985 Genetic Manipulation of Streptomyces: a Laboratory Manual Norwich: John Innes Foundation;
    [Google Scholar]
  22. Horinouchi S., Beppu T. 1992; Autoregulatory factors and communication in actinomycetes. Annu Rev Microbiol 46:377–398
    [Google Scholar]
  23. Horinouchi S., Kumada Y., Beppu T. 1984; Unstable genetic determinant of A-factor biosynthesis in streptomycin-producing organisms: cloning and characterization. J Bacteriol 158:481–487
    [Google Scholar]
  24. Horinouchi S., Suzuki H., Nishiyama M., Beppu T. 1989; Nucleotide sequence and transcriptional analysis of the Streptomyces griseus gene ( afsA ) responsible for A-factor biosynthesis. J Bacteriol 171:1206–1210
    [Google Scholar]
  25. Ishikawa J., Hotta K. 1999; FramePlot: a new implementation of the Frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol Lett 174:252–253
    [Google Scholar]
  26. Kato J.-y., Suzuki A., Yamazaki H., Ohnishi Y., Horinouchi S. 2002; Control by A-factor of a metalloendopeptidase gene involved in aerial mycelium formation in Streptomyces griseus . J Bacteriol 184:6016–6025
    [Google Scholar]
  27. Kawachi R., Akashi T., Kamitani Y., Sy A., Wangchaisoonthorn U., Nihira T., Yamada Y. 2000; Identification of an AfsA homologue (BarX) from Streptomyces virginiae as a pleiotropic regulator controlling autoregulator biosynthesis, virginiamycin biosynthesis and virginiamycin M1 resistance. Mol Microbiol 36:302–313
    [Google Scholar]
  28. Khokhlov A. S., Tovarova I. I., Borisova L. N., Pliner S. A., Shevchenko L. A., Kornitskaya E. Ya., Ivkina N. S., Rapoport I. A. 1967; A-factor responsible for the biosynthesis of streptomycin by a mutant strain of Actinomyces streptomycini . Dokl Akad Nauk SSSR 177:232–235
    [Google Scholar]
  29. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics Norwich: John Innes Foundation;
    [Google Scholar]
  30. Kim H. S., Tada H., Nihira T., Yamada Y. 1990; Purification and characterization of virginiae butanolide C binding protein, a possible pleiotropic signal transducer in Streptomyces virginiae . J Antibiot 43:692–706
    [Google Scholar]
  31. Kinoshita H., Ipposhi H., Okamoto S., Nakano H., Nihira T., Yamada Y. 1997; Butyrolactone autoregulator receptor protein (BarA) as a transcriptional regulator in Streptomyces virginiae . J Bacteriol 179:6986–6993
    [Google Scholar]
  32. Kisker C., Hinrichs W., Tovar K., Hillen W., Saenger W. 1995; The complex formed between Tet repressor and tetracycline-Mg2+ reveals mechanism of antibiotic resistance. J Mol Biol 247:260–280
    [Google Scholar]
  33. Kitani S., Kinoshita H., Nihira T., Yamada Y. 1999; In vitro analysis of the butyrolactone autoregulator receptor protein (FarA) of Streptomyces lavendulae FRI-5 reveals that FarA acts as a DNA-binding transcriptional regulator that controls its own synthesis. J Bacteriol 181:5081–5084
    [Google Scholar]
  34. Kulowski K., Wendt-Pienkowski E., Han L., Yang K., Vining L. C., Hutchinson C. R. 1999; Functional characterization of the jadI gene as a cyclase forming angucyclinones. J Am Chem Soc 121:1786–1794
    [Google Scholar]
  35. Larson J. L., Hershberger C. L. 1986; The minimal replicon of a streptomycete plasmid produces an ultrahigh level of plasmid DNA. Plasmid 15:199–209
    [Google Scholar]
  36. MacNeil D. J., Gewain K. M., Rudy C. L., Dezeny G., Gibbons P. H., MacNeil T. 1992; Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68
    [Google Scholar]
  37. Mazodier P., Peter R., Thompson C. 1989; Intergeneric conjugation between Escherichia coli and Streptomyces species. J Bacteriol 171:3583–3585
    [Google Scholar]
  38. Meurer G., Gerlitz M., Wendt-Pienkowski E., Vining L. C., Rohr J., Hutchinson C. R. 1997; Iterative type II polyketide synthases, cyclases and keto-reductases exhibit context-dependent behavior in the biosynthesis of linear and angular decaketides. Chem Biol 4:433–443
    [Google Scholar]
  39. Miyake K., Horinouchi S., Yoshida M., Chiba N., Mori K., Nogawa N., Morikawa N., Beppu T. 1989; Detection and properties of A-factor-binding protein from Streptomyces griseus . J Bacteriol 171:4298–4302
    [Google Scholar]
  40. Miyake K., Kuzuyama T., Horinouchi S., Beppu T. 1990; The A-factor-binding protein of Streptomyces griseus negatively controls streptomycin production and sporulation. J Bacteriol 172:3003–3008
    [Google Scholar]
  41. Nakano H., Takehara E., Nihira T., Yamada Y. 1998; Gene replacement analysis of the Streptomyces virginiae barA gene encoding the γ-butyrolactone autoregulator receptor reveals that BarA acts as a repressor in virginiamycin biosynthesis. J Bacteriol 180:3317–3322
    [Google Scholar]
  42. Ohnishi Y., Kameyama S., Onaka H., Horinouchi S. 1999; The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus : identification of a target gene of the A-factor receptor. Mol Microbiol 34:102–111
    [Google Scholar]
  43. Onaka H., Ando N., Nihira T., Yamada Y., Beppu T., Horinouchi S. 1995; Cloning and characterization of the A-factor receptor gene from Streptomyces griseus . J Bacteriol 177:6083–6092
    [Google Scholar]
  44. O’Rourke S. J., Chater K. F. 2001; A pathway-specific extracellular factor for methylenomycin biosynthesis. In 12th International Symposium on the Biology of Actinomycetes Vancouver, Canada :O56
    [Google Scholar]
  45. Paradkar A. S., Stuttard C., Vining L. C. 1993; Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. J Gen Microbiol 139:687–694
    [Google Scholar]
  46. Ramalingam E. 1989 Polyketide synthase genes in Streptomyces venezuelae ISP5230 MSc thesis Dalhousie University; Canada:
    [Google Scholar]
  47. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  48. Shikura N., Yamamura J., Nihira T. 2002; barS1 , a gene for biosynthesis of a γ-butyrolactone autoregulator, a microbial signaling molecule eliciting antibiotic production in Streptomyces species. J Bacteriol 184:5151–5157
    [Google Scholar]
  49. Stuttard C. 1982; Temperate phages of Streptomyces venezuelae : lysogeny and host specificity shown by SV1 and SV2. J Gen Microbiol 128:115–121
    [Google Scholar]
  50. Takano E., Nihira T., Hara Y., Jones J. J., Gershater C. J., Yamada Y., Bibb M. J. 2000; Purification and structure determination of SCB1, a γ-butyrolactone that elicits antibiotic production in S. coelicolor A3(2. J Biol Chem 275:11010–11016
    [Google Scholar]
  51. Takano E., Chakraburtty R., Nihira T., Yamada Y., Bibb M. J. 2001; A complex role for the γ -butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 41:1015–1028
    [Google Scholar]
  52. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  53. Waki M., Nihira T., Yamada Y. 1997; Cloning and characterization of the gene ( farA ) encoding the receptor for an extracellular regulatory factor (IM-2) from Streptomyces sp. strain FRI-5. J Bacteriol 179:5131–5137
    [Google Scholar]
  54. Wang L., McVey J., Vining L. C. 2001; Cloning and functional analysis of a phosphopantetheinyl transferase superfamily gene associated with jadomycin biosynthesis in Streptomyces venezuelae ISP5230. Microbiology 147:1535–1545
    [Google Scholar]
  55. Wang L., White R. L., Vining L. C. 2002; Biosynthesis of the dideoxysugar component in jadomycin B: genes in the jad cluster of Streptomyces venezuelae ISP5230 for l-digitoxose assembly and transfer to the angucycline aglycone. Microbiology 148:1091–1103
    [Google Scholar]
  56. Wright F., Bibb M. J. 1992; Codon usage in the G+C-rich Streptomyces genome. Gene 113:55–65
    [Google Scholar]
  57. Yamada Y. 1999; Autoregulatory factors and regulation of antibiotic production in Streptomyces . In Microbial Signaling and Communication (Society for General Microbiology Symposium no. 57) pp 177–196 Edited by England R.R., Hobbs G., Bainton N.J., McL D., Roberts. Cambridge: Cambridge University Press;
    [Google Scholar]
  58. Yamada Y., Nihira T. 1998; Microbial hormones and microbial chemical ecology. In Comprehensive Natural Products Chemistry vol. 8 pp 377–413 Edited by Barton D. H. R., Nakanishi K. Oxford: Elsevier;
    [Google Scholar]
  59. Yang K., Han L., Vining L. C. 1995; Regulation of jadomycin B biosynthesis in Streptomyces venezuelae ISP5230: involvement of a repressor gene, jadR 2 . J Bacteriol 177:6111–6117
    [Google Scholar]
  60. Yang K., Han L., Ayer S. W., Vining L. C. 1996; Accumulation of the angucycline antibiotic rabelomycin after disruption of an oxygenase gene in the jadomycin B biosynthetic gene cluster of Streptomyces venezuelae . Microbiology 142:123–132
    [Google Scholar]
  61. Yang K., Han L., He J., Wang L., Vining L. C. 2001; A repressor-response regulator gene pair controlling jadomycin B production in Streptomyces venezuelae ISP5230. Gene 279:165–173
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26209-0
Loading
/content/journal/micro/10.1099/mic.0.26209-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error