1887

Abstract

A comparative study on phospholipids of , and was carried out using fast-atom bombardment (FAB) and electrospray ionization (ESI) mass spectrometry. Data obtained indicate the presence of acylphosphatidylglycerol (APG), diphosphatidylglycerol, phosphatidylglycerol (PG), phosphatidylinositol (PI) and triacylphosphatidylinositol dimannosides (AcPIM) in these bacteria. In general, octadecenoyl and hexadecanoyl fatty acyl moieties predominated in phospholipids of , whereas high levels of hexadecenoyl were found in and . Mass spectra from purified APG and PG indicated that the -1 position of the glycerol was occupied by octadecenoyl in the three species studied. Notably, several major molecular species of PI and AcPIM from contained significant amounts of a moiety identified as 10-methyleneoctadecanoyl, located at the -1 position of these molecules. On the other hand, multiantibiotic resistant and susceptible strains of differed in several minor phospholipid fatty acids of 19 carbon atoms, identified as 10-methyloctadecenoic, 10-methyloctadecanoic (tuberculostearic acid) and 10-methyleneoctadecanoic. The results demonstrate an overall similarity among the phospholipids of the different species studied but also significant differences related to the acyl chains of the glycerol moiety of these compounds, notably the high levels of an unusual fatty acyl moiety in inositol-containing phospholipids of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26206-0
2003-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491675.html?itemId=/content/journal/micro/10.1099/mic.0.26206-0&mimeType=html&fmt=ahah

References

  1. Akamatsu Y., Law J. H. 1970Enzymatic alkylenation of phospholipid fatty acid chains by extracts of Mycobacterium phlei J Biol Chem245:701–708
    [Google Scholar]
  2. Aubel D., Renaud F. N. R., Freney J. 1997Genomic diversity of several Corynebacterium species identified by amplification of the 16S-23S rRNA gene spacer regionsInt J Syst Bacteriol47:767–772
    [Google Scholar]
  3. Bernard K. A., Bellefeuille M., Ewan E. P. 1991Cellular fatty acid composition as an adjunct to the identification of asporogenous, aerobic gram-positive rodsJ Clin Microbiol29:83–89
    [Google Scholar]
  4. Besra G. S., Morehouse C. B., Rittner C. M., Waechter C. J., Brennan P. J. 1997Biosynthesis of mycobacterial lipoarabinomannanJ Biol Chem272:18460–18466
    [Google Scholar]
  5. Cole M. J., Enke C. G. 1991Direct determination of phospholipid structures in microorganisms by fast atom bombardment triple quadrupole mass spectrometryAnal Chem63:1032–1038
    [Google Scholar]
  6. Collins M. D., Cummins C. S. 1986Genus Corynebacterium In Bergey's Manual of Systematic Bacteriology vol. 2pp 1266–1276Edited by Sneath P. H. A., Mair N. A., Sharpe M. E., Holt J. G. Baltimore, MDWilliams & Wilkins
    [Google Scholar]
  7. Collins M. D., Falsen E., Akervall E., Sjöden B., Álvarez A. 1998Corynebacterium kroppenstedtii sp. nov., a novel corynebacterium that does not contain mycolic acidsInt J Syst Bacteriol48:1449–1454
    [Google Scholar]
  8. Couderc F. 1995Gas chromatography/tandem mass spectrometry as an analytical tool for the identification of fatty acidsLipids30:691–699
    [Google Scholar]
  9. Couderc F., de Briel D., Demont N., Gilard V., Promé J. C. 1991Mass spectrometry as a tool for identifying group D2 corynebacteria by their fatty acid profilesJ Gen Microbiol137:1903–1909
    [Google Scholar]
  10. Dobson G., Minnikin D. E., Minnikin S. M., Parlett J. H., Goodfellow M., Ridell M., Magnusson M. 1985Systematic analysis of complex mycobacterial lipidsIn Chemical Methods in Bacterial Systematics pp 237–265Edited by Goodfellow M., Minnikin D. E. LondonAcademic Press
    [Google Scholar]
  11. Dowhan W. 1997Molecular basis of membrane phospholipid diversity: why are there so many lipids?Annu Rev Biochem66:199–232
    [Google Scholar]
  12. Esteban J., Nieto E., Calvo R., Fernández-Roblas R., Valero-Guillén P. L., Soriano F. 1999Microbiological characterization and clinical significance of Corynebacterium amycolatum strainsEur J Clin Microbiol Infect Dis18:518–521
    [Google Scholar]
  13. Funke G., Bernard K. A. 1999Coryneform gram-positive rodsIn Manual of Clinical Microbiology 7th ednpp 319–345Edited by Murray P. R., Baron E. J., Faller M. A., Tenover F. C., Yolken R. H. Washington, DCAmerican Society for Microbiology
    [Google Scholar]
  14. Funke G., Lawson P. A., Bernard K. A., Collins M. D. 1996Most Corynebacterium xerosis strains identified in the routine clinical laboratory correspond to Corynebacterium amycolatum J Clin Microbiol34:1124–1128
    [Google Scholar]
  15. Funke G., von Graevenitz A., Clarridge J. E. III, Bernard K. A. 1997Clinical microbiology of coryneform bacteriaClin Microbiol Rev10:125–159
    [Google Scholar]
  16. Garton N. J., Gilleron M., Brando T., Dan H.-H., Giguère S., Puzo G., Prescott J. F., Sutcliffe I. C. 2002A novel lipoarabinomannan from the equine pathogen Rhodococcus equi J Biol Chem277:31722–31733
    [Google Scholar]
  17. Gilleron M., Nigou J., Cahuzac B., Puzo G. 1999Structural study of the lipomannans from Mycobacterium bovis BCG: characterisation of multiacylated forms of the phosphatidyl- myo -inositol anchorJ Mol Biol285:2147–2160
    [Google Scholar]
  18. Gilleron M., Ronet C., Mempel M., Monsarrat B., Gachelin G., Puzo G. 2001Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guérin and ability to induce granuloma and recruit natural killer T cellsJ Biol Chem276:34896–34904
    [Google Scholar]
  19. Herrera-Alcaraz E., Valero-Guillén P. L., Martín-Luengo F.. &Soriano F.1990Taxonomic implications of the chemical analysis of the D2 group of corynebacteriaFEMS Microbiol Lett72:341–344
    [Google Scholar]
  20. Jackson M., Crick D. C., Brennan P. J. 2000Phosphatidylinositol is an essential phospholipid of mycobacteriaJ Biol Chem275:30092–30099
    [Google Scholar]
  21. Khoo K.-H., Dell A., Morris H. R., Brennan P. J., Chatterjee D. 1995Structural definition of acylated phosphatidylinositol mannosides from Mycobacterium tuberculosis : definition of a common anchor for lipomannan and lipoarabinomannanGlycobiology5:117–127
    [Google Scholar]
  22. Korduláková J., Gilleron M., Mikusová K., Puzo G., Brennan P. J., Gicquel B., Jackson M. 2002Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis. pimA is essential for growth of mycobacteriaJ Biol Chem277:31335–31344
    [Google Scholar]
  23. Larsson L., Mardh P. A., Odham G., Westerdahl G. 1981Use of selected ion monitoring for detection of tuberculostearic and C32 mycocerosic acid in mycobacteria and in five-day-old cultures of sputum specimens from patients with pulmonary tuberculosisActa Pathol Microbiol Scand B89:245–251
    [Google Scholar]
  24. Minnikin D. E. 1982Lipids: complex lipids, their chemistry, biosynthesis and rolesIn The Biology of the Mycobacteria vol. 1pp 95–184Edited by Ratledge C., Stanford J. L. LondonAcademic Press
    [Google Scholar]
  25. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M. 1977Polar lipid composition of Nocardia and related bacteriaInt J Syst Bacteriol27:104–117
    [Google Scholar]
  26. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M. 1980Thin layer chromatography of methanolysates of mycolic acid-containing bacteriaJ Chromatogr188:221–233
    [Google Scholar]
  27. Murphy R. C., Harrison K. A. 1994Fast atom bombardment mass spectrometry of phospholipidsMass Spectrom Rev13:57–75
    [Google Scholar]
  28. Niepel T., Meyer H., Wray V., Abraham W.-R. 1998Intraspecific variation of unusual phospholipids from Corynebacterium spp. containing a novel fatty acidJ Bacteriol180:4650–4657
    [Google Scholar]
  29. Nigou J., Gilleron M., Puzo G. 1999Lipoarabinomannans: characterization of the multiacylated forms of the phosphatidyl- myo -inositol anchor by NMR spectroscopyBiochem J337:453–460
    [Google Scholar]
  30. Nigou J., Gilleron M., Rojas M., García L. F., Thurnher M., Puzo G. 2002Mycobacterial lipoarabinomannans: modulators of dendritic cell function and the apoptotic responseMicrobes Infect4:945–953
    [Google Scholar]
  31. Puech V., Chami M., Lemassu A., Lanéelle M. A., Schiffler B., Gounon P., Bayan N., Benz R., Daffé M. 2001Structure of the cell envelope of corynebacteria: importance of the noncovalently bound lipids in the formation of the cell wall permeability barrier and fracture planeMicrobiology147:1365–1382
    [Google Scholar]
  32. Schaeffer M. L., Khoo K.-H., Besra G. S., Chatterjee D., Brennan P. J., Belisle J. T., Inamine J. 1999The pimB gene of Mycobacterium tuberculosis encodes a mannosyltransferase involved in lipoarabinomannan biosynthesisJ Biol Chem274:31625–31631
    [Google Scholar]
  33. Soriano F., Aguado J. M., Ponte C., Fernández-Roblas R., Rodríguez-Tudela J. L. 1990Urinary tract infection caused by Corynebacterium group D2. Report of 82 cases and reviewRev Infect Dis6:1019–1034
    [Google Scholar]
  34. Wauters G., Driessen A., Ageron E., Janssen M., Grimont P. A. D. 1996Propionic acid-producing strains previously designated as Corynebacterium xerosis , C. minutissimum , C. striatum , and CDC group I2 and group F2 coryneforms belong to the species Corynebacterium amycolatum Int J Syst Bacteriol46:653–657
    [Google Scholar]
  35. Yagüe G., Segovia M., Valero-Guillén P. L. 1997Acyl phosphatidylglycerol: a major phospholipid of Corynebacterium amycolatum FEMS Microbiol Lett151:125–130
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26206-0
Loading
/content/journal/micro/10.1099/mic.0.26206-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error