1887

Abstract

The analysis of the available genome sequence data led to the proposal of the presence of all three known pathways for trehalose biosynthesis in bacteria, i.e. trehalose synthesis from UDP-glucose and glucose 6-phosphate (OtsA-OtsB pathway), from malto-oligosaccharides or -1,4-glucans (TreY-TreZ pathway), or from maltose (TreS pathway). Inactivation of only one of the three pathways by chromosomal deletion did not have a severe impact on growth, while the simultaneous inactivation of the OtsA-OtsB and TreY-TreZ pathway or of all three pathways resulted in the inability of the corresponding mutants to synthesize trehalose and to grow efficiently on various sugar substrates in minimal media. This growth defect was largely reversed by the addition of trehalose to the culture broth. In addition, a possible pathway for glycogen synthesis from ADP-glucose involving glycogen synthase (GlgA) was discovered. was found to accumulate significant amounts of glycogen when grown under conditions of sugar excess. Insertional inactivation of the chromosomal gene led to the failure of cells to accumulate glycogen and to the abolition of trehalose production in a Δ background, demonstrating that trehalose production via the TreY-TreZ pathway is dependent on a functional glycogen biosynthetic route. The trehalose-non-producing mutant with inactivated OtsA-OtsB and TreY-TreZ pathways displayed an altered cell wall lipid composition when grown in minimal broth in the absence of trehalose. Under these conditions, the mutant lacked both major trehalose-containing glycolipids, i.e. trehalose monocorynomycolate and trehalose dicorynomycolate, in its cell wall lipid fraction. The results suggest that a dramatically altered cell wall lipid bilayer of trehalose-less mutants may be responsible for the observed growth deficiency of such strains in minimal medium. The results of the genetic and physiological dissection of trehalose biosynthesis in reported here may be of general relevance for the whole phylogenetic group of mycolic-acid-containing coryneform bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26205-0
2003-07-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491659.html?itemId=/content/journal/micro/10.1099/mic.0.26205-0&mimeType=html&fmt=ahah

References

  1. Adams M. D., Celniker S. E., Venter J. C.. 191 other authors 2000; The genome sequence of Drosophila melanogaster . Science287:2185–2195
    [Google Scholar]
  2. Arabidopsis Genome Initiative 2000; Analysis of the genome sequence of the flowering plant Arabidopsis thaliana . Nature408:796–815
    [Google Scholar]
  3. Argüelles J. C.. 2000; Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol174:217–224
    [Google Scholar]
  4. Birnboim H. C., Doly J.. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res7:1513–1523
    [Google Scholar]
  5. Brana A. F., Manzantal M., Hardisson C.. 1982; Characterization of intracellular polysaccharides of Streptomyces . Can J Microbiol28:1320–1323
    [Google Scholar]
  6. Bullock W. O., Fernandez J. M., Short J. M.. 1987; XL1-Blue: a high efficiency plasmid DNA transforming rec A Escherichia coli strain with beta-galactosidase selection. BioTechniques5:376–379
    [Google Scholar]
  7. Cole S. T., Brosch R., Barrell B. G.. 39 other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature393:537–544
    [Google Scholar]
  8. De Smet K. A., Weston A., Brown I. N., Young D. B., Robertson B. D.. 2000; Three pathways for trehalose biosynthesis in mycobacteria. Microbiology146:199–208
    [Google Scholar]
  9. De Virgilio C., Burckert N., Bell W., Jeno P., Boller T., Wiemken A.. 1993; Disruption of TPS2 , the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae , causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem212:315–323
    [Google Scholar]
  10. Jarlier V., Nikaido H.. 1990; Permeability barrier to hydrophilic solutes in Mycobacterium chelonei . J Bacteriol172:1418–1423
    [Google Scholar]
  11. Kaasen I., McDougall J., Strom A. R.. 1994; Analysis of the otsBA operon for osmoregulatory trehalose synthesis in Escherichia coli and homology of the OtsA and OtsB proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene145:9–15
    [Google Scholar]
  12. Kinoshita S., Ukada S. R., Shimono M.. 1957; Studies on the amino acid fermentation. I. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol3:139–205
    [Google Scholar]
  13. Leuchtenberger W.. 1996; Amino acids – technical production and use. In Biotechnology , vol. 6, Products of the Primary Metabolism pp 466–502 Edited by Rehm H. J., Reed G.. Weinheim, Germany: VCH;
    [Google Scholar]
  14. Lewington J., Greenaway S. D., Spillane B. J.. 1987; Rapid small scale preparation of bacterial genomic DNA, suitable for cloning and hybridization analysis. Lett Appl Microbiol5:51–53
    [Google Scholar]
  15. Liebl W.. others 2001; Corynebacterium nonmedical. In The Prokaryotes. An Evolving Electronic Resource for the Microbiological Community , 3rd edn. (latest update release 3.8, December 2001) Edited by Dworkin M.. New York: Springer;
    [Google Scholar]
  16. Liebl W., Bayerl A., Schein B., Stillner U., Schleifer K. H.. 1989a; High efficiency electroporation of intact Corynebacterium glutamicum cells. FEMS Microbiol Lett53:299–303
    [Google Scholar]
  17. Liebl W., Klamer R., Schleifer K. H.. 1989b; Requirement of chelating compounds for the growth of Corynebacterium glutamicum in synthetic media. Appl Microbiol Biotechnol32:205–210
    [Google Scholar]
  18. Liebl W., Sinskey A. J., Schleifer K. H.. 1992; Expression, secretion, and processing of staphylococcal nuclease by Corynebacterium glutamicum . J Bacteriol174:1854–1861
    [Google Scholar]
  19. Liu J., Nikaido H.. 1999; A mutant of Mycobacterium smegmatis defective in the biosynthesis of mycolic acids accumulates meromycolates. Proc Natl Acad Sci U S A96:4011–4016
    [Google Scholar]
  20. Londesborough J., Vuorio O. E.. 1993; Purification of trehalose synthase from baker's yeast. Its temperature-dependent activation by fructose 6-phosphate and inhibition by phosphate. Eur J Biochem216:841–848
    [Google Scholar]
  21. Maruta K., Hattori K., Nakada T., Kubota M., Sugimoto T., Kurimoto M.. 1996a; Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim Biophys Acta1289:10–13
    [Google Scholar]
  22. Maruta K., Hattori K., Nakada T., Kubota M., Sugimoto T., Kurimoto M.. 1996b; Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci Biotechnol Biochem60:717–720
    [Google Scholar]
  23. Maruta K., Mitsuzumi H., Nakada T., Kubota M., Chaen H., Fukuda S., Sugimoto T., Kurimoto M.. 1996c; Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius . Biochim Biophys Acta1291:177–181
    [Google Scholar]
  24. Maruta K., Kubota M., Fukuda S., Kurimoto M.. 2000; Cloning and nucleotide sequence of a gene encoding a glycogen debranching enzyme in the trehalose operon from Arthrobacter sp . Q36. Biochim Biophys Acta1476:377–381
    [Google Scholar]
  25. Minnikin D. E., O'Donnell A. G.. 1984; Actinomycete envelope lipid and peptidoglycan composition. In The Biology of Actinomycetes pp 337–388 Edited by Goodfellow M., Mordarski M., Williams S. T. London: Academic Press;
    [Google Scholar]
  26. Nakada T., Maruta K., Tsusaki K., Kubota M., Chaen H., Sugimoto T., Kurimoto M., Tsujisaka Y.. 1995; Purification and properties of a novel enzyme, maltooligosyl trehalose synthase, from Arthrobacter sp. Q36. Biosci Biotechnol Biochem59:2210–2214
    [Google Scholar]
  27. Nikaido H., Kim S. H., Rosenberg E. Y.. 1993; Physical organization of lipids in the cell wall of Mycobacterium chelonae . Mol Microbiol8:1025–1030
    [Google Scholar]
  28. Nishimoto T., Nakano M., Nakada T., Chaen H., Fukuda S., Sugimoto T., Kurimoto M., Tsujisaka Y.. 1996; Purification and properties of a novel enzyme, trehalose synthase, from Pimelobacter sp. R48. Biosci Biotechnol Biochem60:640–644
    [Google Scholar]
  29. Preiss J., Greenberg E.. 1965; Biosynthesis of bacterial glycogen. 3. The adenosine diphosphate-glucose : alpha-4-glucosyl transferase of Escherichia coli B. Biochemistry4:2328–2334
    [Google Scholar]
  30. Puech V., Bayan N., Salim K., Leblon G., Daffé. & M.. 2000; Characterization of the in vivo acceptors of the mycoloyl residues transferred by the corynebacterial PS1 and the related mycobacterial antigens 85. Mol Microbiol35:1026–1041
    [Google Scholar]
  31. Puech V., Chami M., Lemassu A., Lanéelle M. A., Schiffler B., Gounon P., Bayan N., Benz R., Daffé M.. 2001; Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology147:1365–1382
    [Google Scholar]
  32. Reinders A., Burckert N., Hohmann S., Thevelein J. M., Boller T., Wiemken A., De Virgilio C.. 1997; Structural analysis of the subunits of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae and their function during heat shock. Mol Microbiol24:687–695
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  34. Sathyamoorthy N., Takayama K.. 1987; Purification and characterization of a novel mycolic acid exchange enzyme from Mycobacterium smegmatis . J Biol Chem262:13417–13423
    [Google Scholar]
  35. Schäfer A., Kalinowski J., Simon R., Seep-Feldhaus A. H., Pühler A.. 1990; High-frequency conjugal plasmid transfer from gram-negative Escherichia coli to various gram-positive coryneform bacteria. J Bacteriol172:1663–1666
    [Google Scholar]
  36. Schäfer A., Tauch A., Jager W., Kalinowski J., Thierbach G., Pühler A.. 1994; Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene145:69–73
    [Google Scholar]
  37. Shimakata T., Minatogawa Y.. 2000; Essential role of trehalose in the synthesis and subsequent metabolism of corynomycolic acid in Corynebacterium matruchotii . Arch Biochem Biophys380:331–338
    [Google Scholar]
  38. Simic P., Sahm H., Eggeling L.. 2001; l-Threonine export: use of peptides to identify a new translocator from Corynebacterium glutamicum . J Bacteriol183:5317–5324
    [Google Scholar]
  39. Simon R., Priefer U., Puehler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology1:784–791
    [Google Scholar]
  40. Skjerdal O. T., Sletta H., Flenstad S. G., Josefsen K. D., Levine D. W., Ellingsen T. E.. 1996; Changes in intracellular composition in response to hyperosmotic stress of NaCl, sucrose or glutamic acid in Brevibacterium lactofermentum and Corynebacterium glutamicum . Appl Microbiol Biotechnol44:635–642
    [Google Scholar]
  41. Skjerdal O. T., Sletta H., Flenstad S. G., Josefsen K. D., Levine D. W., Ellingsen T. E.. 1995; Changes in cell volume, growth and respiration rate in response to hyperosmotic stress of NaCl, sucrose and glutamic acid in Brevibacterium lactofermentum and Corynebacterium glutamicum . Appl Microbiol Biotechnol43:1099–1106
    [Google Scholar]
  42. Tsusaki K., Nishimoto T., Nakada T., Kubota M., Chaen H., Sugimoto T., Kurimoto M.. 1996; Cloning and sequencing of trehalose synthase gene from Pimelobacter sp. R48. Biochim Biophys Acta1290:1–3
    [Google Scholar]
  43. Tsusaki K., Nishimoto T., Nakada T., Kubota M., Chaen H., Fukuda S., Sugimoto T., Kurimoto M.. 1997; Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC33923. Biochim Biophys Acta 1334;28–32
    [Google Scholar]
  44. Vallino J. J., Stephanopoulos G.. 1993; Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol Bioeng41:633–646
    [Google Scholar]
  45. Wittmann C., Heinzle E.. 2001; Application of MALDI-TOF MS to lysine-producing Corynebacterium glutamicum : a novel approach for metabolic flux analysis. Eur J Biochem268:2441–2455
    [Google Scholar]
  46. Wolf A., Morbach S., Krämer R.. 2002; Oral presentation, VAAM meeting 24–27.03.2002 Göttingen:
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26205-0
Loading
/content/journal/micro/10.1099/mic.0.26205-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error