1887

Abstract

The gene family of comprises four highly conserved members named (), (), () and (). Each gene copy is located within the subtelomeric region of a different chromosome and all are homologues of the gene which is thought to function in the biosynthesis of hydroxymethylpyrimidine (HMP), a precursor of vitamin B, thiamin. A comprehensive phylogenetic study has shown that the existence of as a gene family is exclusive to those yeasts of the subgroup. To determine the function and redundancy of each of the homologues, all combinations of the single, double, triple and quadruple deletion mutants were constructed using a PCR-mediated gene-disruption strategy. Phenotypic analyses of these mutant strains have shown the four genes to be functionally redundant in terms of HMP formation for thiamin biosynthesis; each promotes synthesis of HMP from the pyridoxine (vitamin B) biosynthetic pathway. Furthermore, growth studies with the quadruple mutant strain support a previous proposal of an alternative HMP biosynthetic pathway that operates in yeast under anaerobic growth conditions. Comparative analysis of mRNA levels has revealed subtle differences in the regulation of the four genes, suggesting that they respond differently to nutrient limitation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26194-0
2003-06-01
2020-08-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/6/mic1491447.html?itemId=/content/journal/micro/10.1099/mic.0.26194-0&mimeType=html&fmt=ahah

References

  1. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J. C., Hieter P., Boeke J. D.. 1998; Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast14:115–132
    [Google Scholar]
  2. Burrows R. J., Byrne K. L., Meacock P. A.. 2000; Isolation and characterization of Saccharomyces cerevisiae mutants with derepressed thiamine gene expression. Yeast16:1497–1508
    [Google Scholar]
  3. Carlson M., Botstein D.. 1983; Organization of the SUC gene family in Saccharomyces . Mol Cell Biol3:351–359
    [Google Scholar]
  4. Carter A. T., Beiche F., Hove-Jensen B., Narbad A., Barker P. J., Schweizer L. M., Schweizer M.. 1997; PRS1 is a key member of the gene family encoding phosphoribosylpyrophosphate synthetase in Saccharomyces cerevisiae . Mol Gen Genet254:148–156
    [Google Scholar]
  5. Chow T. H., Sollitti P., Marmur J.. 1989; Structure of the multigene family of MAL loci in Saccharomyces . Mol Gen Genet217:60–69
    [Google Scholar]
  6. Church G. M., Gilbert W.. 1984; Genomic sequencing. Proc Natl Acad Sci U S A81:1991–1995
    [Google Scholar]
  7. Cliften P. F., Hillier L. W., Fulton L., Graves T., Miner T., Gish W. R., Waterston R. H., Johnston M.. 2001; Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res11:1175–1186
    [Google Scholar]
  8. Day R. E., Higgins V. J., Rogers P. J., Dawes I. W.. 2002; Characterization of the putative maltose transporters encoded by YDL247w and YJR160c . Yeast19:1015–1027
    [Google Scholar]
  9. Delneri D., Gardner D. C., Bruschi C. V., Oliver S. G.. 1999a; Disruption of seven hypothetical aryl alcohol dehydrogenase genes from Saccharomyces cerevisiae and construction of a multiple knock-out strain. Yeast15:1681–1689
    [Google Scholar]
  10. Delneri D., Gardner D. C., Oliver S. G.. 1999b; Analysis of the seven-member AAD gene set demonstrates that genetic redundancy in yeast may be more apparent than real. Genetics153:1591–1600
    [Google Scholar]
  11. Ehrenshaft M., Bilski P., Li M. Y., Chignell C. F., Daub M. E.. 1999; A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis. Proc Natl Acad Sci U S A96:9374–9378
    [Google Scholar]
  12. Geitz R. D., Schiestl R. H., Willems A. R., Woods R. A.. 1995; Studies on the transformation of intact yeast cells by the LiAc/ss-DNA/PEG procedure. Yeast11:355–360
    [Google Scholar]
  13. Goffeau A., Barrell B. G., Bussey H.. 13 other authors 1996; Life with 6000 genes. Science274:546–552
    [Google Scholar]
  14. Gonzalez E., Fernandez M. R., Larroy C., Sola L., Pericas M. A., Pares X., Biosca J. A.. 2000; Characterization of a (2 R ,3 R )-2,3-butanediol dehydrogenase as the Saccharomyces cerevisiae YAL060W gene product. Disruption and induction of the gene. J Biol Chem275:35876–35885
    [Google Scholar]
  15. Goodey A. R., Tubb R. S.. 1982; Genetic and biochemical analysis of the ability of Saccharomyces cerevisiae to decarboxylate cinnamic acids. J Gen Microbiol128:2615–2620
    [Google Scholar]
  16. Grue-Sorensen G., White R. L., Spenser I. D.. 1986; Thiamin biosynthesis in Saccharomyces cerevisiae – origin of the pyrimidine unit. J Am Chem Soc108:146–158
    [Google Scholar]
  17. Hernando Y., Parr A., Schweizer M.. 1998; PRS5 , the fifth member of the phosphoribosyl pyrophosphate synthetase gene family in Saccharomyces cerevisiae , is essential for cell viability in the absence of either PRS1 or PRS3 . J Bacteriol180:6404–6407
    [Google Scholar]
  18. Hohmann S., Meacock P. A.. 1998; Thiamin metabolism and thiamine diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae : genetics and regulation. Biochim Biophys Acta 1385;201–219
    [Google Scholar]
  19. Johnston J. R., Mortimer R. K.. 1984; Pedigree of the yeast genetics stock centre wild-type strains S288c and X2180 of S. cerevisiae . Heredity52:459–469
    [Google Scholar]
  20. Kamihara T., Nakamura I.. 1982; Regulation of respiration and its related metabolism by vitamin B1 and vitamin B6 in Saccharomyces cerevisiae . Adv Biochem Eng Biotech29:35–82
    [Google Scholar]
  21. Li Y., Chen J., Lun S. Y., Rui X. S.. 2001; Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata : key role and optimization of vitamin levels. Appl Microbiol Biotechnol55:680–685
    [Google Scholar]
  22. Llorente B., Fairhead C., Dujon B.. 1999; Genetic redundancy and gene fusion in the genome of the baker's yeast Saccharomyces cerevisiae : functional characterization of a three-member gene family involved in the thiamine biosynthetic pathway. Mol Microbiol32:1140–1152
    [Google Scholar]
  23. Mantsala P., Zalkin H.. 1984; Glutamine nucleotide sequence of Saccharomyces cerevisiae ADE4 encoding phosphoribosylpyrophosphate amidotransferase. J Biol Chem259:8478–8484
    [Google Scholar]
  24. Maundrell K.. 1990; nmt1 of fission yeast – a highly transcribed gene completely repressed by thiamine. J Biol Chem265:10857–10864
    [Google Scholar]
  25. Maundrell K.. 1993; Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene123:127–130
    [Google Scholar]
  26. Mortimer R. K., Johnston J. R.. 1986; Genealogy of principal strains of the Yeast Genetic Stock Center. Genetics113:35–43
    [Google Scholar]
  27. Muller E. H., Richards E. J., Norbeck J., Byrne K. L., Karlsson K.-A., Pretorius G. H. J., Meacock P. A., Blomberg A., Hohmann S.. 1999; Thiamine repression and pyruvate decarboxylase autoregulation independently control the expression of the Saccharomyces cerevisiae PDC5 gene. FEBS Lett449:245–250
    [Google Scholar]
  28. Naumov G. I., Naumova E. S., Louis E. J.. 1995; Genetic mapping of the alpha-galactosidase MEL gene family on right and left telomeres of Saccharomyces cerevisiae . Yeast11:481–483
    [Google Scholar]
  29. Naumov G. I., James S. A., Naumova E. S., Louis E. J., Roberts I. N.. 2000; Three new species in the Saccharomyces sensu stricto complex: Saccharomyces cariocanus , Saccharomyces kudriavzevii and Saccharomyces mikatae . Int J Syst Evol Microbiol50:1931–1942
    [Google Scholar]
  30. Nishimura H., Kawasaki Y., Kaneko Y., Nosaka K., Iwashima A.. 1992a; Cloning and characteristics of a positive regulatory gene, THI2 ( PHO6 ), of thiamin biosynthesis in Saccharomyces cerevisiae . . FEBS Lett 297:155–158
    [Google Scholar]
  31. Nishimura H., Kawasaki Y., Kaneko Y., Nosaka K., Iwashima A.. 1992b; A positive regulatory gene, THI3 , is required for thiamine metabolism in Saccharomyces cerevisiae . J Bacteriol174:4701–4706
    [Google Scholar]
  32. Osmani A. H., May G. S., Osmani S. A.. 1999; The extremely conserved pyroA gene of Aspergillus nidulans is required for pyridoxine synthesis and is required indirectly for resistance to photosensitizers. J Biol Chem274:23565–23569
    [Google Scholar]
  33. Padilla P. A., Fuge E. K., Crawford M. E., Errett A., Werner-Washburne M.. 1998; The highly conserved, coregulated SNO and SNZ gene families in Saccharomyces cerevisiae respond to nutrient limitation. J Bacteriol180:5718–5726
    [Google Scholar]
  34. Praekelt U. M., Meacock P. A.. 1992; MOL1 , a Saccharomyces cerevisiae gene that is highly expressed in early stationary phase during growth on molasses. Yeast8:699–710
    [Google Scholar]
  35. Praekelt U. M., Byrne K. L., Meacock P. A.. 1994; Regulation of THI4 ( MOL1 ), a thiamine biosynthetic gene of Saccharomyces cerevisiae . Yeast10:481–490
    [Google Scholar]
  36. Rodríguez-Navarro S., Llorente B., Rodríguez-Manzaneque M. T.. 7 other authors 2002; Functional analysis of yeast gene families involved in metabolism of vitamins B1 and B6. Yeast19:1261–1276
    [Google Scholar]
  37. Rose M. D., Winston F., Hieter P.. 1990; Methods in Yeast Genetics CSHL Press;
    [Google Scholar]
  38. Schmitt M. E., Brown T. A., Trumpower B. L.. 1990; A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae . Nucleic Acids Res18:3091–3092
    [Google Scholar]
  39. Schweingruber A. M., Dlugonski J., Edenharter E., Schweingruber M. E.. 1991; Thiamine in Schizosaccharomyces pombe : dephosphorylation, intracellular pool, biosynthesis and transport. Curr Genet19:249–254
    [Google Scholar]
  40. Tanaka K., Tazuya K., Yamada K., Kumaoka H.. 2000; Biosynthesis of thiamin under anaerobic conditions in Saccharomyces cerevisiae . Biol Pharm Bull23:108–111
    [Google Scholar]
  41. Tazuya K., Yamada K., Kumaoka H.. 1989; Incorporation of histidine into the pyrimidine moiety of thiamin in Saccharomyces cerevisiae . Biochim Biophys Acta990:73–79
    [Google Scholar]
  42. Tazuya K., Yamada K., Kumaoka H.. 1993; Pyridoxine is a precursor of the pyrimidine moiety of thiamin in Saccharomyces cerevisiae . Biochem Mol Biol Int30:893–899
    [Google Scholar]
  43. Tazuya K., Adachi Y., Masuda K., Yamada K., Kumaoka H.. 1995; Origin of the nitrogen atom of pyridoxine in Saccharomyces cerevisiae . Biochim Biophys Acta1244:113–116
    [Google Scholar]
  44. Wickerham L. J.. 1951; Taxonomy of yeast. U S Dept Agric Tech Bull1029:11–56
    [Google Scholar]
  45. Wieczorke R., Krampe S., Weierstall T., Freidel K., Hollenberg C. P., Boles E.. 1999; Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae . FEBS Lett464:123–128
    [Google Scholar]
  46. Zeidler J., Ullah N., Gupta R. N., Pauloski R. M., Sayer B. G., Spenser I. D.. 2002; 2′-Hydroxypyridoxol, a biosynthetic precursor of vitamins B6 and B1 in yeast. J Am Chem Soc124:4542–4543
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26194-0
Loading
/content/journal/micro/10.1099/mic.0.26194-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error