1887

Abstract

sp. strain MS11 was isolated from a mixed culture. It displays a diverse range of metabolic capabilities. During growth on 1,2,4-trichlorobenzene, 1,2,4,5-tetrachlorobenzene (1,2,4,5-TeCB) and 3-chlorobenzoate stoichiometric amounts of chloride were released. It also utilized all three isomeric dichlorobenzenes and 1,2,3-trichlorobenzene as the sole carbon and energy source. Furthermore, the bacterium grew well on a great number of n-alkanes ranging from n-heptane to n-triacontane and on the branched alkane 2,6,10,14-tetramethylpentadecane (pristane) and slowly on n-hexane and n-pentatriacontane. It was able to grow at temperatures from 5 to 30 °C, with optimal growth at 20 °C, and could tolerate 6 % NaCl in mineral salts medium. Genes encoding the initial chlorobenzene dioxygenase were detected by using a primer pair that was designed against the -subunit (TecA1) of the chlorobenzene dioxygenase of (formerly ) sp. strain PS12. The amino acid sequence of the amplified part of the -subunit of the chlorobenzene dioxygenase of sp. strain MS11 showed >99 % identity to the -subunit of the chlorobenzene dioxygenase from sp. strain PS12 and the parts of both -subunits responsible for substrate specificity were identical. The subsequent enzymes dihydrodiol dehydrogenase and chlorocatechol 1,2-dioxygenase were induced in cells grown on 1,2,4,5-TeCB. During cultivation on medium-chain-length n-alkanes ranging from n-decane to n-heptadecane, including 1-hexadecene, and on the branched alkane pristane, strain MS11 produced biosurfactants lowering the surface tension of the cultures from 72 to ⩽29 mN m. Glycolipids were extracted from the supernatant of a culture grown on n-hexadecane and characterized by H- and C-NMR-spectroscopy and mass spectrometry. The two major components consisted of ,-trehalose esterified at C-2 or C-4 with a succinic acid and at C-2′ with a decanoic acid. They differed from one another in that one 2,3,4,2′-trehalosetetraester, found in higher concentration, was esterified at C-2, C-3 or C-4 with one octanoic and one decanoic acid and the other one, of lower concentration, with two octanoic acids. The results demonstrate that sp. strain MS11 may be well suited for bioremediation of soils and sediments contaminated for a long time with di-, tri- and tetrachlorobenzenes as well as alkanes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26188-0
2003-10-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492879.html?itemId=/content/journal/micro/10.1099/mic.0.26188-0&mimeType=html&fmt=ahah

References

  1. Bartrakov S. G., Rozynov B. V., Koronelli T. V., Bergelson L. D.. 1981; Two novel types of trehalose lipids. Chem Phys Lipids29:241–266
    [Google Scholar]
  2. Beil S., Happe B., Timmis K. N., Pieper D. H.. 1997; Genetic and biochemical characterization of the broad spectrum chlorobenzene dioxygenase from Burkholderia sp. strain PS12. Dechlorination of 1,2,4,5-tetrachlorobenzene. Eur J Biochem247:190–199
    [Google Scholar]
  3. Beil S., Mason J. R., Timmis K. N., Pieper D. H.. 1998; Identification of chlorobenzene dioxygenase sequence elements involved in dechlorination of 1,2,4,5-tetrachlorobenzene. J Bacteriol180:5520–5528
    [Google Scholar]
  4. Beil S., Timmis K. N., Pieper D. H.. 1999; Genetic and biochemical analyses of the tec operon suggest a route for evolution of chlorobenzene degradation genes. J Bacteriol181:341–346
    [Google Scholar]
  5. Bej A. K., Saul D., Aislabie J.. 2000; Cold-tolerant alkane-degrading Rhocococcus species from Antarctica. Polar Biol23:100–105
    [Google Scholar]
  6. Bergmann J. G., Sanik J.. 1957; Determination of trace amounts of chlorine in naphtha. Anal Chem29:241–243
    [Google Scholar]
  7. Bizet C., Barreau C., Harant C., Nowakowski M., Pietfroid A.. 1997; Identification of Rhodococcus , Gordona and Dietzia species using carbon source utilization tests (“biotype-100” strips. Res Microbiol148:799–809
    [Google Scholar]
  8. Boehringer Mannheim Biochemica 1994; Methoden der enzymatischen Bioanalytik und Lebensmittelanalytik Mannheim, Germany: Boehringer Mannheim;
    [Google Scholar]
  9. Bosma T. N., Middeldorp P. I. M., Schraa G., Zehnder A. J. B.. 1997; Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol31:248–252
    [Google Scholar]
  10. Bouwer E. J., Zehnder A. J. B.. 1993; Bioremediation of organic compounds – putting microbial metabolism to work. TIBTECH11:360–367
    [Google Scholar]
  11. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  12. Brunsbach F. R., Reineke W.. 1994; Degradation of chlorobenzenes in soil slurry by a specialized organism. Appl Microbiol Biotechnol42:415–420
    [Google Scholar]
  13. Chauhan S., Barbieri P., Wood T. K.. 1998; Oxidation of trichloroethylene, 1,1-dichloroethylene, and chloroform by toluene/ o -xylene monooxygenase from Pseudomonas stutzeri OX1. Appl Environ Microbiol64:3023–3024
    [Google Scholar]
  14. De Bont J. A. M., Vorage M. J. A. W., Hartmans S., van den Tweel W. J. J.. 1986; Microbial degradation of 1,3-dichlorobenzene. Appl Environ Microbiol52:677–680
    [Google Scholar]
  15. Dorn E., Knackmuss H.-J.. 1978a; Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J174:73–84
    [Google Scholar]
  16. Dorn E., Knackmuss H.-J.. 1978b; Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J174:85–94
    [Google Scholar]
  17. Espuny M. J., Egjido S., Mercade M. E., Manresa A.. 1995; Characterization of trehalose tetraester produced by a waste lube oil degrader Rhodococcus sp. 51T7. Toxicol Environ Chem48:83–88
    [Google Scholar]
  18. Finnerty W. R.. 1992; The biology and genetics of the genus Rhodococcus . Annu Rev Microbiol46:193–218
    [Google Scholar]
  19. Gallardo M. E., Fernandez A., de Lorenzo V., Garcia J. L., Diaz E.. 1997; Designing recombinant Pseudomonas strains to enhance biodesulfurization. J Bacteriol179:7156–7160
    [Google Scholar]
  20. Gibson D. T., Parales R. E.. 2000; Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol11:236–243
    [Google Scholar]
  21. Goodfellow M.. 1989; Genus Rhodococcus Zopf 1891, 28AL. In Bergey's Manual of Systematic Bacteriology vol. 4 pp 2362–2371 Edited by Williams S. T., Sharpe M. E., Holt J. G.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  22. Goodfellow M., Alderson G., Chun J.. 1998; Rhodococcal systematics: problems and developments. Antonie van Leeuwenhoek74:3–20
    [Google Scholar]
  23. Goulding C., Gillen C. J., Bolton E.. 1988; Biodegradation of substituted benzenes. J Appl Bacteriol65:1–5
    [Google Scholar]
  24. Gutell R. R., Weiser B., Woese C. R., Noller H. F.. 1985; Comparative anatomy of 16-S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol32:155–216
    [Google Scholar]
  25. Haigler B. E., Nishino S. F., Spain J. C.. 1988; Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol54:294–301
    [Google Scholar]
  26. Hisatsuka K.-I., Nakahara T., Sano N., Yamada K.. 1971; Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric Biol Chem35:686–692
    [Google Scholar]
  27. Hommel R. K.. 1990; Formation and physiological role of biosurfactants produced by hydrocarbon-utilizing microorganisms. Biodegradation1:107–119
    [Google Scholar]
  28. Inoue S., Ito S.. 1982; Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentations. Biotechnol Lett4:3–8
    [Google Scholar]
  29. Kauppi B., Lee K., Carredano E., Parales R. E., Gibson D. T., Eklund H., Ramaswamy S.. 1998; Structure of an aromatic-ring-hydroxylating dioxygenase-naphthalene 1,2-dioxygenase. Structure6:571–586
    [Google Scholar]
  30. Kim J.-S., Powalla M., Lang S., Wagner F., Lünsdorf H., Wray V.. 1990; Microbial glycolipid production under nitrogen limitation and resting cell conditions. J Biotechnol13:257–266
    [Google Scholar]
  31. Krebs K. G., Heusser D., Wimmer H.. 1967; Sprühreagentien. In Dünnschichtchromato-Graphie pp 813–859 Edited by Stahl E.. Berlin: Springer;
    [Google Scholar]
  32. Larsen H.. 1986; Halophilic and halotolerant microorganisms – an overview and historical perspective. FEMS Microbiol Rev39:3–7
    [Google Scholar]
  33. Lofgren J., Haddad S., Kendall K.. 1995; Metabolism of alkanes by Rhodococcus erythropolis . Emerg Technol Hazard Waste Manag607:252–263
    [Google Scholar]
  34. Maidak B. L., Olsen G. J., Larsen N., Overbeek R., McCaughey M. J., Woese C. R.. 1997; The RDP (ribosomal database project. Nucleic Acids Res25:109–110
    [Google Scholar]
  35. McAuliffe C.. 1969; Solubility in water of normal C9 and C10 alkane hydrocarbons. Science163:478–479
    [Google Scholar]
  36. Milekhina E. I., Borzenkov I. A., Zvyagintseva I. S., Kostrikina N. A., Belyaev S. S.. 1998; Characterization of hydrocarbon-oxidizing Rhodococcus erythropolis strain isolated from an oil field. Microbiology (English translation of Mikrobiologiya)67:328–332
    [Google Scholar]
  37. Nakazawa T., Yokota T.. 1973; Benzoate metabolism in Pseudomonas putida (arvilla) mt-2: demonstration of two benzoate pathways. J Bacteriol115:262–267
    [Google Scholar]
  38. Nam J.-W., Nojiri H., Yoshida T., Habe H., Yamane H., Omori T.. 2001; New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Biosci Biotechnol Biochem65:254–263
    [Google Scholar]
  39. Nozaki M.. 1970; Metapyrocatechase ( Pseudomonas . Methods Enzymol17A:522–525
    [Google Scholar]
  40. Oldenhuis R., Kuijk L., Lammers A., Janssen D. B., Witholt B.. 1989; Degradation of chlorinated and non-chlorinated aromatic solvents in soil suspensions by pure bacterial cultures. Appl Microbiol Biochem30:211–217
    [Google Scholar]
  41. Oltmanns R. H., Rast H. G., Reineke W.. 1988; Degradation of 1,4-dichlorobenzene by enriched and constructed bacteria. Appl Microbiol Biotechnol28:609–616
    [Google Scholar]
  42. Passeri A., Lang S., Wagner F., Wray V.. 1991; Marine biosurfactants. II. Production and characterization of an anionic trehalose tetraester from the marine bacterium Arthrobacter sp. EK 1. Z Naturforsch46c:204–209
    [Google Scholar]
  43. Passeri A., Schmidt M., Haffner T., Wray V., Lang S., Wagner F.. 1992; Marine biosurfactants. IV. Production, characterization and biosynthesis of an anionic glucose lipid from the marine bacterial strain MM1. Appl Microbiol Biotechnol37:281–286
    [Google Scholar]
  44. Poelarends G. J., Kulakov L. A., Larkin M. J., van Hylckama Vlieg J. E. T., Jansen D. B.. 2000; Roles of horizontal gene transfer and gene integration in evolution of 1,3-dichloropropene- and 1,2-dibromoethane-degradative pathways. J Bacteriol182:2191–2199
    [Google Scholar]
  45. Potrawfke T., Timmis K. N., Wittich R.-M.. 1998; Degradation of 1,2,3,4-tetrachlorobenzene by Pseudomonas chlororaphis RW71. Appl Environ Microbiol64:3798–3806
    [Google Scholar]
  46. Rapp P., Timmis K. N.. 1999; Degradation of chlorobenzenes at nanomolar concentrations by Burkholderia sp. strain PS14 in liquid cultures and in soil. Appl Environ Microbiol65:2547–2552
    [Google Scholar]
  47. Rapp P., Bock H., Wray V., Wagner F.. 1979; Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J Gen Microbiol115:491–503
    [Google Scholar]
  48. Rehm H. J., Reiff I.. 1981; Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv Biochem Bioeng19:175–215
    [Google Scholar]
  49. Reineke W., Knackmuss H.-J.. 1984; Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol47:395–401
    [Google Scholar]
  50. Ristau E., Wagner F.. 1983; Formation of novel anionic trehalose tetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnol Lett5:95–100
    [Google Scholar]
  51. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A.. 1988; Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science239:487–491
    [Google Scholar]
  52. Sander P.. 1991; Bakterieller Abbau halogenierter Benzole PhD thesis Universität Hamburg; Germany:
    [Google Scholar]
  53. Sander P., Wittich R.-M., Fortnagel P., Wilkes H., Francke W.. 1991; Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene by Pseudomonas strains. Appl Environ Microbiol57:1430–1440
    [Google Scholar]
  54. Schlömann M.. 2002; Two chlorocatechol catabolic gene modules on plasmid pJP4. J Bacteriol184:4049–4053
    [Google Scholar]
  55. Schmidt K., Jensen S. L., Schlegel H. G.. 1963; Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch Microbiol46:117–126
    [Google Scholar]
  56. Schraa G., Boone M. L., Jetten M. S. M., van Neerven A. R. W., Colberg P. J., Zehnder A. J. B.. 1986; Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl Environ Microbiol52:1374–1381
    [Google Scholar]
  57. Smibert R. M., Krieg N. R.. others 1981; General characterization. In Manual of Methods for General Bacteriology pp 407–443 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  58. Sorkhoh N. A., Ghannoum M. A., Ibrahim A. S., Stretton R. J., Radwan S. S.. 1990; Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ Pollut65:1–17
    [Google Scholar]
  59. Spain J. C., Nishino S. F.. 1987; Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol53:1010–1019
    [Google Scholar]
  60. Spiess E., Sommer C., Görisch H.. 1995; Degradation of 1,4-dichlorobenzene by Xanthobacter flavus 14p1. Appl Environ Microbiol61:3884–3888
    [Google Scholar]
  61. Stoecker M. A., Herwig R. P., Staley J. T.. 1994; Rhodococcus zopfii sp. nov., a toxicant-degrading bacterium. Int J Syst Bacteriol44:106–110
    [Google Scholar]
  62. Stoesser G., Sterk P., Tuli M. A., Stoehr P. J., Cameron G. N.. 1997; The EMBL nucleotide sequence database. Nucleic Acids Res25:7–13
    [Google Scholar]
  63. Uchida Y., Tsuchiya R., Chino M., Hirano J., Tabuchi T.. 1989; Extracellular accumulation of mono- and di-succinoyl trehalose lipids by a strain of Rhodococcus erythropolis grown on n-alkanes. Agric Biol Chem53:757–763
    [Google Scholar]
  64. van der Meer J. R.. 1997; Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie van Leeuwenhoek71:159–178
    [Google Scholar]
  65. van der Meer J. R., Roelofsen W., Schraa G., Zehnder A. J. B.. 1987; Degradation of low concentrations of dichlorobenzenes and 1,2,4-trichlorobenzene by Pseudomonas sp. strain P51 in nonsterile soil columns. FEMS Microbiol Ecol45:333–341
    [Google Scholar]
  66. van der Meer J. R., Eggen R. I. L., Zehnder A. J. B., de Vos W. M.. 1991a; Sequence analysis of the Pseudomonas sp. strain P51 tcb gene cluster, which encodes metabolism of chlorinated catechols: evidence for specialization of catechol 1,2-dioxygenases for chlorinated substrates. J Bacteriol173:2425–2434
    [Google Scholar]
  67. van der Meer J. R., Frijters A. C. J., Leveau J. H. J., Eggen R. I. L., Zehnder A. J. B., de Vos W. M.. 1991b; Characterization of the Pseudomonas sp. strain P51 gene tcbR , a lysR -type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. J Bacteriol173:3700–3708
    [Google Scholar]
  68. van der Meer J. R., Zehnder A. J. B., de Vos W. M.. 1991c; Identification of a novel composite transposable element, Tn 5280 , carrying chlorobenzene dioxygenase genes of Pseudomonas sp. strain P51. J Bacteriol173:7077–7083
    [Google Scholar]
  69. Warhurst A. M., Fewson C. A.. 1994; Biotransformation catalyzed by the genus Rhodococcus . Crit Rev Biotechnol14:29–73
    [Google Scholar]
  70. Werlen C., Kohler H.-P. E., van der Meer J. R.. 1996; The broad substrate chlorobenzene dioxygenase and cis -chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J Biol Chem271:4009–4016
    [Google Scholar]
  71. Weser C.. 1980; Die Messung der Grenz-und Oberflächenspannung von Flüssigkeiten – eine Gesamtdarstellung für den Praktiker. GIT Fachz Lab24:734–742
    [Google Scholar]
  72. Whyte L. G., Hawari J., Zhou E., Bourbonniere L., Inniss W. E., Greer C. W.. 1998; Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol64:2578–2584
    [Google Scholar]
  73. Woese C. R., Gutell R., Gupta R., Noller H. F.. 1983; Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol Rev47:621–669
    [Google Scholar]
  74. Wyndham R. C., Cashore A. E., Nakatsu C. H., Peel M. C.. 1994; Catabolic transposons. Biodegradation5:323–342
    [Google Scholar]
  75. Zaitsev G. M., Uotila J. S., Tsitko I. V., Lobanok A. G., Salkinoja-Salonen M. S.. 1995; Utilization of halogenated benzenes, phenols, and benzoates by Rhodococcus opacus GM-14. Appl Environ Microbiol61:4191–4201
    [Google Scholar]
  76. Zhang Y., Miller R. M.. 1995; Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol61:2247–2251
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26188-0
Loading
/content/journal/micro/10.1099/mic.0.26188-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error