1887

Abstract

Copper and iron uptake in are linked through a high-affinity ferric/cupric-reductive uptake system. Evidence suggests that a similar system operates in . The authors have identified a gene that is able to rescue a /-null mutant defective in high-affinity copper uptake. The 756 bp ORF, designated , encodes a 251 amino acid protein with a molecular mass of 27·8 kDa. Comparisons between the deduced amino acid sequence of the Ctr1p and Ctr1p indicated that they share 39·6 % similarity and 33·0 % identity over their entire length. Within the predicted protein product of there are putative transmembrane regions and sequences that resemble copper-binding motifs. The promoter region of contains four sequences with significant identity to copper response elements. is transcriptionally regulated in in response to copper availability by the copper-sensing transactivator Mac1p. Transcription of in is also regulated in a copper-responsive manner. This raises the possibility that may be regulated in by a Mac1p-like transactivator. A -null mutant displays phenotypes consistent with the lack of copper uptake including growth defects in low-copper and low-iron conditions, a respiratory deficiency and sensitivity to oxidative stress. Furthermore, changes in morphology were observed in the -null mutant. It is proposed that facilitates transport of copper into the cell.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26172-0
2003-06-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/6/mic1491461.html?itemId=/content/journal/micro/10.1099/mic.0.26172-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Angrave, F. E. & Avery, S. V. ( 2001; ). Antioxidant functions required for insusceptibility of Saccharomyces cerevisiae to tetracycline antibiotics. Antimicrob Agents Chemother 45, 2939–2942.[CrossRef]
    [Google Scholar]
  3. Askwith, C., Eide, D., Van Ho, A., Bernard, P. S., Li, L., Davis-Kaplan, S., Sipe, D. M. & Kaplan, J. ( 1994; ). The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76, 403–410.[CrossRef]
    [Google Scholar]
  4. Avery, S. V., Malkapuram, D., Mateus, C. & Babb, K. S. ( 2000; ). Copper/zinc-superoxide dismutase is required for oxytetracycline resistance in Saccharomyces cerevisiae. J Bacteriol 182, 76–80.[CrossRef]
    [Google Scholar]
  5. Berben, G., Dumont, J., Gilliquet, V., Bolle, P. A. & Hilger, F. ( 1991; ). The YDp plasmids – a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7, 475–477.[CrossRef]
    [Google Scholar]
  6. Braun, B. R. & Johnson, A. D. ( 1997; ). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109.[CrossRef]
    [Google Scholar]
  7. Brendel, V., Bucher, P., Nourbakhsh, I., Blaisdell, B. E. & Karlin, S. ( 1992; ). Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A 89, 2002–2006.[CrossRef]
    [Google Scholar]
  8. Cha, J. S. & Cooksey, D. A. ( 1991; ). Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci U S A 88, 8915–8919.[CrossRef]
    [Google Scholar]
  9. Chaffin, W. L., López-Ribot, J. L., Casanova, M., Gozalbo, D. & Martínez, J. P. ( 1998; ). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Rev 62, 130–180.
    [Google Scholar]
  10. Church, G. M. & Gilbert, W. ( 1984; ). Genomic sequencing. Proc Natl Acad Sci U S A 81, 1991–1995.[CrossRef]
    [Google Scholar]
  11. Culotta, V. C., Klomp, L. W. J., Strain, J., Casareno, R. L. B., Krems, B. & Gitlin, J. D. ( 1997; ). The copper chaperone for superoxide dismutase. J Biol Chem 272, 23469–23472.[CrossRef]
    [Google Scholar]
  12. Dancis, A., Klausner, R. D., Hinnebusch, A. G. & Barriocanal, J. G. ( 1990; ). Genetic evidence that ferric-reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10, 2294–2301.
    [Google Scholar]
  13. Dancis, A., Roman, D. G., Anderson, G. J., Hinnebusch, A. G. & Klausner, R. D. ( 1992; ). Ferric-reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake and transcriptional control by iron. Proc Natl Acad Sci U S A 89, 3869–3873.[CrossRef]
    [Google Scholar]
  14. Dancis, A., Yuan, D. S., Haile, D., Askwith, C., Eide, D., Moehle, C., Kaplan, J. & Klausner, R. D. ( 1994a; ). Molecular characterization of a copper transport protein in Saccharomyces cerevisiae: an unexpected role for copper in iron transport. Cell 76, 393–402.[CrossRef]
    [Google Scholar]
  15. Dancis, A., Haile, D., Yuan, D. S. & Klausner, R. D. ( 1994b; ). The Saccharomyces cerevisiae copper transport protein (Ctr1p): biochemical characterization, regulation by copper, and physiological role in copper uptake. J Biol Chem 269, 25660–25667.
    [Google Scholar]
  16. Davis, D., Edwards, J. E., Jr, Mitchell, A. P. & Ibrahim, A. S. ( 2000; ). Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68, 5953–5959.[CrossRef]
    [Google Scholar]
  17. De Silva, D. M., Askwith, C. C., Eide, D. & Kaplan, J. ( 1995; ). The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J Biol Chem 270, 1098–1101.[CrossRef]
    [Google Scholar]
  18. Dix, D. R., Bridgham, J. T., Broderius, M. A., Byersdorfer, C. A. & Eide, D. J. ( 1994; ). The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269, 26092–26099.
    [Google Scholar]
  19. Eck, R., Hundt, S., Hartl, A., Roemer, E. & Kunkel, W. ( 1999; ). A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology 145, 2415–2422.
    [Google Scholar]
  20. Eide, D., Davis-Kaplan, S., Jordan, I., Sipe, D. & Kaplan, J. ( 1992; ). Regulation of iron uptake in Saccharomyces cerevisiae: the ferrireductase and Fe(II) transporter are regulated independently. J Biol Chem 267, 20774–20781.
    [Google Scholar]
  21. Fratti, R. A., Belanger, P. H., Ghannoum, M. A. EdwardsJ. E., Jr & Filler, S. G. ( 1998; ). Endothelial cell injury caused by Candida albicans is dependent on iron. Infect Immun 66, 191–196.
    [Google Scholar]
  22. Georgatsou, E. & Alexandraki, D. ( 1994; ). Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 14, 3065–3073.
    [Google Scholar]
  23. Georgatsou, E., Mavrogiannis, L. A., Fragiadakis, G. S. & Alexandraki, D. ( 1997; ). The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272, 13786–13792.[CrossRef]
    [Google Scholar]
  24. Gietz, R. D., St Jean, A., Woods, R. A. & Schiestl, R. H. ( 1992; ). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.[CrossRef]
    [Google Scholar]
  25. Gillum, A. M., Tsay, E. Y. H. & Kirsch, D. R. ( 1984; ). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae URA3 and E. coli pyrF mutations. Mol Gen Genet 198, 179–182.[CrossRef]
    [Google Scholar]
  26. Glerum, D. M., Shtanko, A. & Tzagoloff, A. ( 1996; ). Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271, 14504–14509.[CrossRef]
    [Google Scholar]
  27. Goshorn, A. K., Grindle, S. M. & Scherer, S. ( 1992; ). Gene isolation by complementation in Candida albicans and applications to physical and genetic mapping. Infect Immun 60, 876–884.
    [Google Scholar]
  28. Graden, J. A. & Winge, D. R. ( 1997; ). Copper-mediated repression of the activation domain in the yeast Mac1p transcription factor. Proc Natl Acad Sci U S A 94, 5550–5555.[CrossRef]
    [Google Scholar]
  29. Hammacott, J. E., Williams, P. H. & Cashmore, A. M. ( 2000; ). Candida albicans CFL1 encodes a functional ferric-reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. Microbiology 146, 869–876.
    [Google Scholar]
  30. Hassett, R., Dix, D. R., Eide, D. J. & Kosman, J. ( 2000; ). The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem J 351, 477–484.[CrossRef]
    [Google Scholar]
  31. Heymann, P., Ernst, J. F. & Winkelmann, G. ( 2000; ). Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbol Lett 186, 221–227.[CrossRef]
    [Google Scholar]
  32. Holm, C., Meek-Wagner, D. W., Fangman, W. L. & Botstein, D. ( 1986; ). A rapid efficient method for isolating DNA from yeast. Gene 42, 169–173.[CrossRef]
    [Google Scholar]
  33. Ish-Horowicz, D. & Burke, J. F. ( 1981; ). Rapid and efficient cosmid cloning. Nucleic Acids Res 9, 2989–2998.[CrossRef]
    [Google Scholar]
  34. Ismail, A., Bedell, G. W. & Lupan, D. M. ( 1985; ). Siderophore production by the pathogenic yeast, Candida albicans. Biochem Biophys Res Commun 130, 885–891.[CrossRef]
    [Google Scholar]
  35. Joshi, A., Serpe, M. & Kosman, D. J. ( 1999; ). Evidence for (Mac1p)2. DNA ternary complex formation in Mac1p-dependent transactivation at the CTR1 promoter. J Biol Chem 274, 218–226.[CrossRef]
    [Google Scholar]
  36. Jungmann, J., Reins, H.-A., Lee, J., Romeo, A., Hassett, R., Kosman, D. & Jentsch, S. ( 1993; ). MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilisation and stress resistance in yeast. EMBO J 12, 5051–5056.
    [Google Scholar]
  37. Kampfenkel, K., Kushnir, S., Babiychuk, E., Inzé, D. & Van Montagu, M. ( 1995; ). Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J Biol Chem 270, 28479–28486.[CrossRef]
    [Google Scholar]
  38. Knight, S. A. B., Labbe, S., Kwon, L. F., Kosman, D. J. & Thiele, D. J. ( 1996; ). A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10, 1917–1929.[CrossRef]
    [Google Scholar]
  39. Labbe, S., Zhu, Z. & Thiele, D. J. ( 1997; ). Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 272, 15951–15958.[CrossRef]
    [Google Scholar]
  40. Lesuisse, E. & Labbe, P. ( 1989; ). Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J Gen Microbiol 135, 257–263.
    [Google Scholar]
  41. Lesuisse, E., Simon-Casteras, M. & Labbe, P. ( 1998; ). Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144, 3455–3462.[CrossRef]
    [Google Scholar]
  42. Lin, S. J., Pufahl, R. A., Dancis, A., O'Halloran, T. V. & Culotta, V. C. ( 1997; ). A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272, 9215–9220.[CrossRef]
    [Google Scholar]
  43. Liu, X. L. & Culotta, V. C. ( 1994; ). The requirement for yeast superoxide dismutase is bypassed through mutations in BSD2, a novel metal homeostasis gene. Mol Cell Biol 14, 7037–7045.
    [Google Scholar]
  44. Mandel, M. & Higa, A. ( 1970; ). Calcium-dependent bacteriophage DNA infection. J Mol Biol 53, 159–162.[CrossRef]
    [Google Scholar]
  45. Maniatis, T., Fritsch, E. F. & Sambrook, J. ( 1982; ). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  46. Manns, J. M., Mosser, D. M. & Buckley, J. R. ( 1994; ). Production of hemolytic factor by Candida albicans. Infect Immun 62, 5154–5156.
    [Google Scholar]
  47. Martins, L. J., Jensen, L. T., Simon, J. R., Keller, G. L. & Winge, D. R. ( 1998; ). Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273, 23716–23721.[CrossRef]
    [Google Scholar]
  48. Moors, M. A., Stull, T. L., Blank, K. J., Buckley, H. R. & Mosser, D. M. ( 1992; ). A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med 175, 1643–1651.[CrossRef]
    [Google Scholar]
  49. Morrissey, J. A., Williams, P. H. & Cashmore, A. M. ( 1996; ). Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiology 142, 485–492.[CrossRef]
    [Google Scholar]
  50. Odermatt, A., Suter, H., Krapf, R. & Soloiz, M. ( 1993; ). Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem 268, 12775–12779.
    [Google Scholar]
  51. Pearson, V. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence analysis. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  52. Pufahl, R. A., Singer, C. P., Pearisos, K. L., Lin, S. J., Schmidt, P. J., Fahrni, C. J., Culotta, V. C., Penner-Hahn, J. E. & O'Halloran, T. V. ( 1997; ). Metal chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853–856.[CrossRef]
    [Google Scholar]
  53. Radisky, D. & Kaplan, J. ( 1999; ). Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274, 4481–4484.[CrossRef]
    [Google Scholar]
  54. Ramanan, N. & Wang, Y. ( 2000; ). A high-affinity iron permease essential for Candida albicans virulence. Science 288, 1062–1064.[CrossRef]
    [Google Scholar]
  55. Rothstein, R. J. ( 1983; ). One-step gene disruption in yeast. Methods Enzymol 101, 202–211.
    [Google Scholar]
  56. Scherer, S. & Magee, P. T. ( 1990; ). Genetics of Candida albicans. Microbiol Rev 54, 226–241.
    [Google Scholar]
  57. Schmidt, M. E., Brown, T. A. & Trumpower, B. L. ( 1990; ). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18, 3091.[CrossRef]
    [Google Scholar]
  58. Sedgwick, S. G. & Morgan, B. A. ( 1994; ). Locating, DNA sequencing and disrupting yeast genes using tagged Tn1000. In Methods in Molecular Genetics: Molecular Microbiology Techniques, pp. 131–140. Edited by K. W. Adolph. San Diego & London: Academic Press.
  59. Sherman, F., Fink, G. R. & Hicks, J. B. ( 1986; ). Laboratory Course Manual for Methods in Yeast Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  60. Stearman, R., Yuan, D. S., Yamaguichi-Iwai, Y., Klausner, R. & Dancis, A. ( 1996; ). A permease-oxidase complex involved in high affinity iron uptake in yeast. Science 271, 1552–1557.[CrossRef]
    [Google Scholar]
  61. Sweet, S. P. & Douglas, L. J. ( 1991; ). Effect of iron deprivation on surface composition and virulence derminants of Candida albicans. J Gen Microbiol 137, 859–865.[CrossRef]
    [Google Scholar]
  62. Valenti, P., Visca, P., Antonini, G. & Orsi, N. ( 1986; ). Interaction between lactoferrin and ovotransferrin and Candida cells. FEMS Microbiol Lett 33, 271–275.[CrossRef]
    [Google Scholar]
  63. Van Helden, J. V., Andre, B. & Collado-Vides, J. ( 2000; ). A web site for the computational analysis of yeast regulatory sequences. Yeast 16, 177–187.[CrossRef]
    [Google Scholar]
  64. Weissman, Z., Berdiceevsky, I., Cavari, B. -Z. & Kornitzer, D. ( 2000; ). The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci U S A 97, 3520–3525.[CrossRef]
    [Google Scholar]
  65. Wickerham, L. J. ( 1951; ). Taxonomy of yeast. U S Dep Agric Tech Bull 1029, 11–59.
    [Google Scholar]
  66. Wilson, R. B., Davis, D. & Mitchell, A. P. ( 1999; ). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181, 1868–1874.
    [Google Scholar]
  67. Yamaguchi-Iwai, Y., Dancis, A. & Klausner, R. D. ( 1995; ). AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14, 1231–1239.
    [Google Scholar]
  68. Yamaguchi-Iwai, Y., Stearman, R., Dancis, A. & Klausner, R. D. ( 1996; ). Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J 273, 23716–23721.
    [Google Scholar]
  69. Yamaguchi-Iwai, Y., Serpe, M., Haile, D., Yang, W., Kosman, D. J., Klausner, R. D. & Dancis, A. ( 1997; ). Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 272, 17711–17718.[CrossRef]
    [Google Scholar]
  70. Yuan, D., Stearman, A., Dancis, A., Dunn, T., Beeler, T. & Klausner, R. D. ( 1995; ). The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A 92, 2632–2636.[CrossRef]
    [Google Scholar]
  71. Yun, C.-W., Ferea, T., Rashford, J., Ardon, O., Brown, P. O., Botstein, D., Kaplan, J. & Philpott, C. C. ( 2000a; ). Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae: evidence for two pathways of iron uptake. J Biol Chem 275, 10709–10715.[CrossRef]
    [Google Scholar]
  72. Yun, C.-W., Tiedeman, J. S., Moore, R. E. & Philpott, C. C. ( 2000b; ). Siderophore-iron uptake in Saccharomyces cerevisiae: identification of ferrichrome and fusarinine transporters. J Biol Chem 275, 16354–16359.[CrossRef]
    [Google Scholar]
  73. Yun, C.-W., Baulers, M., Moore, R. E., Klebba, P. E. & Philpott, C. C. ( 2001; ). The role of the FRE family of plasma membrane reductases in Saccharomyces cerevisiae. J Biol Chem 276, 10218–10223.[CrossRef]
    [Google Scholar]
  74. Zhou, B. & Gitschier, J. ( 1997; ). hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A 94, 7481–7486.[CrossRef]
    [Google Scholar]
  75. Zhou, H. & Thiele, D. J. ( 2001; ). Identification of a novel high-affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J Biol Chem 276, 20529–20535.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26172-0
Loading
/content/journal/micro/10.1099/mic.0.26172-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error