1887

Abstract

The important opportunistic pathogen is a strictly anaerobic Gram-negative bacterium and a member of the normal resident human gastrointestinal microbiota. Our earlier studies indicated that there is considerable within-strain variation in polysaccharide expression, as detected by mAb labelling. Analysis of the genome sequence has revealed multiple invertible DNA regions, designated fragilis invertible (fin) regions, seven of which are upstream of polysaccharide biosynthesis loci and are approximately 226 bp in size. Using orientation-specific PCR primers and sequence analysis with populations enriched for one antigenic type, two of these invertible regions were assigned to heteropolymeric polysaccharides with different sizes of repeating units, as determined by PAGE pattern. The implication of these findings is that inversion of the fin regions switches biosynthesis of these polysaccharides off and on. The invertible regions are bound by inverted repeats of 30 or 32 bp with striking similarity to the H flagellar antigen inversion cross-over () recombination sites of the invertible hin region. It has been demonstrated that a plasmid-encoded Hin invertase homologue (FinB), present in NCTC 9343, binds specifically to the invertible regions and the recombination sites have been designated as fragilis inversion cross-over (fix) sites.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26166-0
2003-04-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/4/mic149915.html?itemId=/content/journal/micro/10.1099/mic.0.26166-0&mimeType=html&fmt=ahah

References

  1. Abraham, J., Freitag, C., Clements, J. & Eisenstein, B. ( 1985; ). An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci U S A 82, 5724–5727.[CrossRef]
    [Google Scholar]
  2. Babb, J. L. & Cummins, C. S. ( 1978; ). Encapsulation of Bacteroides species. Infection 19, 1088–1091.
    [Google Scholar]
  3. Bayley, D. P., Rocha, E. R. & Smith, C. J. ( 2000; ). Analysis of cepA and other Bacteroides fragilis genes reveals a unique promoter structure. FEMS Microbiol Lett 193, 149–154.[CrossRef]
    [Google Scholar]
  4. Blake, D. G., Boocock, M. R., Sherratt, D. J. & Stark, W. M. ( 1995; ). Cooperative binding of Tn3 resolvase monomers to a functionally asymmetric binding site. Curr Biol 5, 1036–1046.[CrossRef]
    [Google Scholar]
  5. Blakely, G., May, G., McCulloch, R., Arciszewska, L. K., Burke, M., Lovett, S. T. & Sherratt, D. J. ( 1993; ). Two related recombinases are required for site-specific recombination at dif and cer in E. coli K12. Cell 75, 351–361.[CrossRef]
    [Google Scholar]
  6. Burns, L., Smith, S. & Dorman, C. ( 2000; ). Interaction of FimB integrase with the fimS invertible DNA element in Escherichia coli in vivo and in vitro. J Bacteriol 182, 2953–2959.[CrossRef]
    [Google Scholar]
  7. Comstock, L. E., Coyne, M. J., Tzianabos, A. O., Pantosti, A., Onderdonk, A. B. & Kasper, D. L. ( 1999; ). Analysis of a capsular polysaccharide biosynthesis locus of Bacteroides fragilis. Infect Immun 67, 3525–3532.
    [Google Scholar]
  8. Coyne, M. J., Kalka-Moll, W., Tzianabos, A. O., Kasper, D. L. & Comstock, L. E. ( 2000; ). Bacteroides fragilis NCTC9343 produces at least three distinct capsular polysaccharides: cloning, characterization, and reassignment of polysaccharide B and C biosynthesis loci. Infect Immun 68, 6176–6181.[CrossRef]
    [Google Scholar]
  9. Delahooke, D. M., Barclay, G. R. & Poxton, I. R. ( 1995; ). A re-appraisal of the biological activity of bacteroides LPS. J Med Microbiol 42, 102–112.[CrossRef]
    [Google Scholar]
  10. Drasar, B. S. & Duerden, B. I. ( 1991; ). Anaerobes in the normal flora of man. In Anaerobes in Human Disease, pp. 162–179. Edited by B. I. Duerden. London: Arnold.
  11. Feng, J. A., Johnson, R. C. & Dickerson, R. E. ( 1994; ). Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions. Science 263, 348–355.[CrossRef]
    [Google Scholar]
  12. Fulks, K. A., Marrs, C. F., Stevens, S. P. & Green, M. R. ( 1990; ). Sequence analysis of the inversion region containing the pilin genes of Moraxella bovis. J Bacteriol 172, 310–316.
    [Google Scholar]
  13. Heichman, K. A., Moskowitz, I. P. G. & Johnson, R. C. ( 1991; ). Configuration of DNA strands and mechanism of strand exchange in the Hin invertasome as revealed by analysis of recombinant knots. Genes Dev 1622–1634.
    [Google Scholar]
  14. Hiestand-Nauer, R. & Iida, S. ( 1983; ). Sequence of the site specific recombinase gene cin and of its substrates serving in the inversion of the C segment of bacteriophage P1. EMBO J 2, 1733–1740.
    [Google Scholar]
  15. Hughes, K. T., Gaines, P. C., Karlinsey, J. E., Vinayak, R. & Simon, M. I. ( 1992; ). Sequence-specific interaction of the Salmonella Hin recombinase in both major and minor grooves of DNA. EMBO J 11, 2695–2705.
    [Google Scholar]
  16. Krinos, C. M., Coyne, M. J., Weinacht, K. G., Tzianabos, A. O., Kasper, D. L. & Comstock, L. E. ( 2001; ). Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414, 555–558.[CrossRef]
    [Google Scholar]
  17. Kulasekara, H. & Blomfield, I. ( 1999; ). The molecular basis for the specificity of fimE in the phase variation of type 1 fimbriae of Escherichia coli. Mol Microbiol 31, 1171–1181.[CrossRef]
    [Google Scholar]
  18. Lederberg, J. & Iino, T. ( 1956; ). Phase variation in Salmonella. Genetics 41, 743–757.
    [Google Scholar]
  19. Lindberg, A. A., Weintraub, A., Zahringer, U. & Rietschel, E. T. ( 1990; ). Structure–activity relationships in lipopolysaccharides of Bacteroides fragilis. Rev Infect Dis 12 (suppl. 2), S133–S141.[CrossRef]
    [Google Scholar]
  20. Lutton, D. A., Patrick, S., Crockard, A. D., Stewart, L. D., Larkin, M. J., Dermott, E. & McNeill, T. A. ( 1991; ). Flow cytometric analysis of within-strain variation in polysaccharide expression by Bacteroides fragilis by use of murine monoclonal antibodies. J Med Microbiol 35, 229–237.[CrossRef]
    [Google Scholar]
  21. Patrick, S. ( 2002; ). Bacteroides. In Molecular Medical Microbiology, pp. 1921–1948. Edited by M. Sussman. London: Academic Press.
  22. Patrick, S. & Larkin, M. J. ( 1993; ). Attachment in disease. In Microbial Biofilms: Formation and Control, pp. 109–131. Edited by S. P. Denyer. Oxford: Blackwell Scientific Publications.
  23. Patrick, S. & Reid, J. H. ( 1983; ). Separation of capsulate and non-capsulate Bacteroides fragilis on a discontinuous density gradient. J Med Microbiol 16, 239–241.[CrossRef]
    [Google Scholar]
  24. Patrick, S., Reid, J. H. & Coffey, A. ( 1986; ). Capsulation of in vitro and in vivo grown Bacteroides species. J Gen Microbiol 132, 1099–1109.
    [Google Scholar]
  25. Patrick, S., Lutton, D. A. & Crockard, A. D. ( 1995a; ). Immune reactions to Bacteroides fragilis populations with three different types of capsule in a model of infection. Microbiology 141, 1969–1976.[CrossRef]
    [Google Scholar]
  26. Patrick, S., Stewart, L. D., Damani, N., Wilson, K. G., Lutton, D. A., Larkin, M. J., Poxton, I. & Brown, R. ( 1995b; ). Immunological detection of Bacteroides fragilis in clinical samples. J Med Microbiol 43, 99–109.[CrossRef]
    [Google Scholar]
  27. Patrick, S., Gilpin, D. & Stevenson, L. ( 1999; ). Detection of intrastrain antigenic variation of Bacteroides fragilis surface polysaccharides by monoclonal antibody labelling. Infect Immun 67, 4346–4351.
    [Google Scholar]
  28. Plasterk, R., Brinkman, A. & van de Putte, P. ( 1983; ). DNA inversion in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. Proc Natl Acad Sci U S A 80, 5355–5358.[CrossRef]
    [Google Scholar]
  29. Poxton, I. R. & Brown, R. ( 1986; ). Immunochemistry of the surface carbohydrate antigens of Bacteroides fragilis and definition of a common antigen. J Gen Microbiol 132, 2475–2481.
    [Google Scholar]
  30. Redondo, M. C., Arbo, M. D. J., Grindlinger, J. & Snydman, D. R. ( 1995; ). Attributable mortality of bacteraemia associated with the Bacteroides fragilis group. Clin Infect Dis 20, 1492–1496.[CrossRef]
    [Google Scholar]
  31. Reid, J. H., Patrick, S., Dermott, E., Trudgett, A. & Tabaqchali, S. ( 1985; ). Investigation of antigenic expression of Bacteroides fragilis by immunogold labelling and immunoblotting with a monoclonal antibody. FEMS Microbiol Lett 30, 289–293.[CrossRef]
    [Google Scholar]
  32. Saunders, J. ( 1986; ). The genetic basis of phase and antigenic variation in bacteria. In Antigenic Variation in Infectious Diseases, pp. 57–76. Edited by T. Birkbeck & C. Penn. Oxford: IRL Press.
  33. Spaeny-Dekking, L., van Hemert, M., van de Putte, P. & Goosen, N. ( 1995; ). Gin invertase of bacteriophage Mu is a dimer in solution, with the domain for dimerization in the N-terminal part of the protein. Biochemistry 34, 1779–1786.[CrossRef]
    [Google Scholar]
  34. van de Putte, P. & Goosen, N. ( 1992; ). DNA inversions in phages and bacteria. Trends Genet 8, 457–462.[CrossRef]
    [Google Scholar]
  35. van Tassell, R. L. & Wilkins, T. D. ( 1978; ). Isolation of auxotrophs of Bacteroides fragilis. Can J Microbiol 24, 1619–1621.[CrossRef]
    [Google Scholar]
  36. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
  37. Zieg, J., Hilmen, M. & Simon, M. ( 1977; ). Recombinational switch for gene expression. Science 196, 170–172.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26166-0
Loading
/content/journal/micro/10.1099/mic.0.26166-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error