1887

Abstract

Thiazolylpeptide GE2270 is a potent antibiotic inhibiting protein synthesis in Gram-positive bacteria. It is produced as a complex of 10 related metabolites, differing mainly in the degree of methylation, by fermentation of the rare actinomycete ATCC 53773. Addition of vitamin B12 to the fermentation medium doubled total complex production and markedly changed the relative production of the various GE2270 metabolites, enhancing the biosynthesis of the more methylated component A. Among methylation inhibitors, the addition of sinefungin increased the amount of factor D2, which differs from component A in the lack of a methyl group. Since sinefungin is an -adenosyl--methionine methyltransferase-specific inhibitor, these results indicate that the methylation step converting D2 into A involves an -adenosyl--methionine methyltransferase. Simultaneous supplementation of vitamin B12 and sinefungin led to a twofold increase in D2 concentration, showing that vitamin B12, in addition to having an effect on the late methylation step, exerts a stimulating action on antibiotic backbone synthesis. This is possibly due to its role in an unusual pathway of serine synthesis peculiar to metabolism. Finally, fermentation medium modifications were shown to be useful for the production of industrially valuable levels of components A or D2 in the GE2270 complex as starting points for the production of new interesting semi-synthetic antibiotics.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26157-0
2003-06-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/6/mic1491523.html?itemId=/content/journal/micro/10.1099/mic.0.26157-0&mimeType=html&fmt=ahah

References

  1. Anborgh P. H., Parmeggiani A.. 1991; New antibiotic that acts specifically on the GTP-bound form of elongation factor Tu. EMBO J10:779–784
    [Google Scholar]
  2. Barbes C., Sanchez J., Yebra M. J., Robert-Gero M., Hardisson C.. 1990; Effects of sinefungin and S -adenosylhomocysteine on DNA and protein methyltransferases from Streptomyces and other bacteria. FEMS Microbiol Lett57:239–243
    [Google Scholar]
  3. Bauer N. J., Kreuzman A. J., Dotzlaf J. E., Yeh W. K.. 1988; Purification, characterization, and kinetic mechanism of S -adenosyl-l-methionine : macrocin O -methyltransferase from Streptomyces fradiae . J Biol Chem263:15619–15625
    [Google Scholar]
  4. Blanco J., Coque J. J., Martin J. F.. 1998; The folate branch of the methionine biosynthesis pathway in Streptomyces lividans : disruption of the 5,10-methylenetetrahydrofolate reductase gene leads to methionine auxotrophy. J Bacteriol180:1586–1591
    [Google Scholar]
  5. Borchardt R. T., Eiden L. E., Wu B., Rutledge C. O.. 1979; Sinefungin, a potent inhibitor of S -adenosylmethionine : protein O -methyltransferase. Biochem Biophys Res Commun89:919–924
    [Google Scholar]
  6. Brown G. M., Williamson J. M.. 1982; Biosynthesis of riboflavin, folic acid, thiamine, and pantothenic acid. Adv Enzymol Relat Areas Mol Biol53:345–381
    [Google Scholar]
  7. Cameron D. M., Thompson J., March P. E., Dahlberg A. E.. 2002; Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome. J Mol Biol319:27–35
    [Google Scholar]
  8. Chen T. S., Arison B. H., Ruby C. L., Dombrowski A. W., Inamine E. S.. 1993; A cofactor for thienamycin biosynthesis produced by a blocked mutant of Streptomyces cattleya . J Ind Microbiol12:66–67
    [Google Scholar]
  9. Claridge C. A., Rossomano V. Z., Buono N. S., Gourevitch A., Lein J.. 1966; Influence of cobalt on fermentative methylation. Appl Microbiol14:280–283
    [Google Scholar]
  10. Colombo L., Stella S., Selva E.. 1995; Contribution of mass spectrometry to the structural confirmation of components of the antibiotic GE2270 complex. Rapid Commun Mass Spectrom9:717–722
    [Google Scholar]
  11. Connors N. C., Strohl W. R.. 1993; Partial purification and properties of carminomycin 4- O -methyltransferase from Streptomyces sp. strain C5. J Gen Microbiol139:1353–1362
    [Google Scholar]
  12. De Pietro M. T., Marazzi A., Sosio M., Donadio S., Lancini G.. 2001; Biosynthesis of the thiazolylpeptide antibiotic GE2270. J Antibiot (Tokyo54:1066–1071
    [Google Scholar]
  13. Fate G. D., Benner C. P., Grode S. H., Gilbertson T. J.. 1996; The biosynthesis of sulfomycin elucidated by isotopic labeling studies. J Am Chem Soc118:11363–11368
    [Google Scholar]
  14. Favret M. E., Boeck L. D.. 1992; Effect of cobalt and cyanocobalamin on biosynthesis of A10255, a thiopeptide antibiotic complex. J Antibiot (Tokyo45:1809–1811
    [Google Scholar]
  15. Favret M. E., Paschal J. W., Elzey T. K., Boeck L. D.. 1992; Biosynthesis of thiopeptide antibiotic A10255: incorporation of isotopically-labeled precursors. J Antibiot (Tokyo45:1499–1511
    [Google Scholar]
  16. Goldstein B. P., Berti M., Ripamonti F., Resconi A., Scotti R., Denaro M.. 1993; In vitro antimicrobial activity of a new antibiotic. MDL 62:879 (GE2270 A; Antimicrob Agents Chemother37:741–745
    [Google Scholar]
  17. Haydock S. F., Dowson J. A., Dhillon N., Roberts G. A., Cortes J., Leadlay P. F.. 1991; Cloning and sequence analysis of genes involved in erythromycin biosynthesis in Saccharopolyspora erythraea : sequence similarities between EryG and a family of S -adenosylmethionine-dependent methyltransferases. Mol Gen Genet230:120–128
    [Google Scholar]
  18. Heffron S. E., Jurnak F.. 2000; Structure of an EF-Tu complex with a thiazolyl peptide antibiotic determined at 2·35 Å resolution: atomic basis for GE2270A inhibition of EF-Tu. Biochemistry39:37–45
    [Google Scholar]
  19. Hogg T., Mesters J. R., Hilgenfeld R.. 2002; Inhibitory mechanisms of antibiotics targeting elongation factor Tu. Curr Protein Pept Sci3:121–131
    [Google Scholar]
  20. Jabes D., Cavaleri M., Romanò G., Mosconi G., Bojar R., Cunliffe W.. 2002; Preclinical profile of BI-K0376: a new promising topical treatment for acne. In 20th World Congress of Dermatology Paris:July 2002
  21. Kakinuma S., Suzuki K., Hatori M., Saitoh K., Hasegawa T., Furumai T., Oki T.. 1993; Biosynthesis of the pradimicin family of antibiotics. III. Biosynthetic pathway of both pradimicins and benanomicins. . J Antibiot (Tokyo46:430–440
    [Google Scholar]
  22. Kamigiri K., Hidaka T., Imai S., Murakami T., Seto H.. 1992; Studies on the biosynthesis of bialaphos (SF-1293) 12. C–P bond formation mechanism of bialaphos: discovery of a P-methylation enzyme. J Antibiot (Tokyo45:781–787
    [Google Scholar]
  23. Kettenring J., Colombo L., Ferrari P., Tavecchia P., Nebuloni M., Vekey K., Gallo G. G., Selva E.. 1991; Antibiotic GE2270 A: a novel inhibitor of bacterial protein synthesis. II. Structure elucidation. J Antibiot (Tokyo44:702–715
    [Google Scholar]
  24. Kreuzman A. J., Turner J. R., Yeh W. K.. 1988; Two distinctive O -methyltransferases catalyzing penultimate and terminal reactions of macrolide antibiotic (tylosin) biosynthesis. Substrate specificity, enzyme inhibition, and kinetic mechanism. . J Biol Chem263:15626–15633
    [Google Scholar]
  25. Kuzuyama T., Hidaka T., Kamigiri K., Imai S., Seto H.. 1992; Studies on the biosynthesis of fosfomycin. 4. The biosynthetic origin of the methyl group of fosfomycin. J Antibiot (Tokyo45:1812–1814
    [Google Scholar]
  26. Kuzuyama T., Seki T., Dairi T., Hidaka T., Seto H.. 1995; Nucleotide sequence of fortimicin KL1 methyltransferase gene isolated from Micromonospora olivasterospora , and comparison of its deduced amino acid sequence with those of methyltransferases involved in the biosynthesis of bialaphos and fosfomycin. J Antibiot (Tokyo48:1191–1193
    [Google Scholar]
  27. Landini P., Soffientini A., Monti F., Lociuro S., Marzorati E., Islam K.. 1996; Antibiotics MDL 62,879 and kirromycin bind to distinct and independent sites of elongation factor Tu (EF-Tu. Biochemistry35:15288–15294
    [Google Scholar]
  28. Lociuro S., Tavecchia P., Marzorati E., Landini P., Goldstein B. P., Denaro M., Ciabatti R.. 1997; Antimicrobial activities of chemically modified thiazolyl peptide antibiotic MDL 62,879 (GE2270A. J Antibiot (Tokyo50:344–349
    [Google Scholar]
  29. Matthews R. G.. 2001; Cobalamin-dependent methyltransferases. Acc Chem Res34:681–689
    [Google Scholar]
  30. Miller P. A., Saturnelli A., Martin J. H., Itscher L. A., Bohonos N.. 1964; A new family of tetracycline precursors. N -Demethylanhydrotetracyclines.. Biochem Biophys Res Commun16:285–291
    [Google Scholar]
  31. Mocek U., Knaggs A. R., Tsuchiya R., Nguyen T., Beala J. M., Floss H.. 1993a; Biosynthesis of the modified peptide antibiotics nosiheptide in Streptomyces actuosus . J Am Chem Soc115:7557–7568
    [Google Scholar]
  32. Mocek U., Zeng Z., O'Hagan D., Zhou P., Fan L. D. G., Beala J. M., Floss H.. 1993b; Biosynthesis of the modified peptide antibiotic thiosptrepton in Streptomyces azureus and Streptomyces laurentii . J Am Chem Soc115:7992–8001
    [Google Scholar]
  33. National Institutes of Health 2001; NIAID Global Health Research Plan for HIV/AIDS. Malaria and Tuberculosis
    [Google Scholar]
  34. Okumura S., Deguchi T., Marumo H.. 1981; Biosynthetic incorporation of methyl groups into fortimicins. J Antibiot (Tokyo34:1360–1362
    [Google Scholar]
  35. Pearce C. J., Carter G. T., Nietsche J. A., Borders D. B., Greenstein M., Maiese W. M.. 1991; The effect of methylation inhibitors on citreamicin biosynthesis in Micromonospora citrea . J Antibiot (Tokyo44:1247–1251
    [Google Scholar]
  36. Porse B. T., Leviev I., Mankin A. S., Garrett R. A.. 1998; The antibiotic thiostrepton inhibits a functional transition within protein L11 at the ribosomal GTPase centre. J Mol Biol276:391–404
    [Google Scholar]
  37. Pospisil S., Zima J.. 1987; Biosynthesis of monensins and 3- O -demethylmonensins in Streptomyces cinnamonensis in the presence of methylation inhibitors. FEMS Microbiol Lett44:283–287
    [Google Scholar]
  38. Rizzo A. M., Gastaldo L.. 1999; Process for the selective increase of production of antibiotic GE 2270 factor A by adding vitamin B12 to nutrient medium . US Patentno: 5 882 900
    [Google Scholar]
  39. Roth J. R., Lawrence J. G., Bobik T. A.. 1996; Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol50:137–181
    [Google Scholar]
  40. Saitoh K., Furumai T., Oki T., Nishida F., Harada K., Suzuki M.. 1995; Pradimicin S, a new pradimicin analog. III. Application of the frit-FAB LC/MS technique to the elucidation of the pradimicin S biosynthetic pathway. J Antibiot (Tokyo48:162–168
    [Google Scholar]
  41. Schulman M. D., Valentino D., Hensens O. D., Zink D., Nallin M., Kaplan L., Ostlind D. A.. 1985; Demethylavermectins. Biosynthesis, isolation and characterization. . J Antibiot (Tokyo38:1494–1498
    [Google Scholar]
  42. Schulman M. D., Valentino D., Nallin M., Kaplan L.. 1986; Avermectin B2 O -methyltransferase activity in ‘ Streptomyces avermitilis ’ mutants that produce increased amounts of the avermectins. Antimicrob Agents Chemother29:620–624
    [Google Scholar]
  43. Schulman M. D., Valentino D., Streicher S., Ruby C.. 1987;Streptomyces avermitilis ’ mutants defective in methylation of avermectins. Antimicrob Agents Chemother31:744–747
    [Google Scholar]
  44. Selva E., Beretta G., Montanini N.. & 8 other authors. 1991; Antibiotic GE2270 A: a novel inhibitor of bacterial protein synthesis.. I. Isolation and characterization. J Antibiot (Tokyo44:693–701
    [Google Scholar]
  45. Selva E., Ferrari P., Kurz M.. & 7 other authors. 1995; Components of the GE2270 complex produced by Planobispora rosea ATCC 53773. J Antibiot (Tokyo48:1039–1042
    [Google Scholar]
  46. Selva E., Montanini N., Stella S., Soffientini A., Gastaldo L., Denaro M.. 1997; Targeted screening for elongation factor Tu binding antibiotics. J Antibiot (Tokyo50:22–26
    [Google Scholar]
  47. Seno E. T., Baltz R. H.. 1981; Properties of S -adenosyl-l-methionine : macrocin O -methyltransferase in extracts of Streptomyces fradiae strains which produce normal or elevated levels of tylosin and in mutants blocked in specific O -methylations. Antimicrob Agents Chemother20:370–377
    [Google Scholar]
  48. Shafiee A., Motamedi H., Chen T.. 1994; Enzymology of FK-506 biosynthesis. Purification and characterization of 31- O -desmethylFK-506 O  : methyltransferase from Streptomyces sp. MA6858. Eur J Biochem225:755–764
    [Google Scholar]
  49. Shimanaka K., Iinuma H., Hamada M., Ikeno S., Tsuchiya K. S., Arita M., Hori M.. 1995; Novel antibiotics, amythiamicins. IV. A mutation in the elongation factor Tu gene in a resistant mutant of B. subtilis. J Antibiot (Tokyo)48:182–184
    [Google Scholar]
  50. Stella S., Montanini N., Le Monnier F.. & 8 other authors. 1995; Antibiotic GE37468 A: a new inhibitor of bacterial protein synthesis. I. Isolation and characterization. . J Antibiot (Tokyo48:780–786
    [Google Scholar]
  51. Tavecchia P., Gentili P., Kurz M., Sottani C., Bonfichi R., Lociuro S., Selva E.. 1994; Revised structure of the antibiotic GE 2270A. J Antibiot (Tokyo47:1564–1567
    [Google Scholar]
  52. Weitnauer G., Gaisser S., Kellenberger L., Leadlay P. F., Bechthold A.. 2002; Analysis of a C-methyltransferase gene ( aviG1 ) involved in avilamycin biosynthesis in Streptomyces viridochromogenes Tu57 and complementation of a Saccharopolyspora erythraea eryBIII mutant by aviG1 . Microbiology148:373–379
    [Google Scholar]
  53. Yamamoto M., Okachi R., Kawamoto I., Nara T.. 1977; Fortimicin A production by Micromonospora olivoasterospora in a chemically defined medium. J Antibiot (Tokyo30:1064–1072
    [Google Scholar]
  54. Yang S. W., Lin L. J., Cordell G. A., Wang P., Corley D. G.. 1999; O - and N -methylation in the biosynthesis of staurosporine. J Nat Prod62:1551–1553
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26157-0
Loading
/content/journal/micro/10.1099/mic.0.26157-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error