1887

Abstract

produces extracellular glycolipids composed of -rhamnose and 3-hydroxyalkanoic acid called rhamnolipids. Although these compounds are usually regarded as biosurfactants or haemolysins, their exact physiological function is not well understood. Rhamnolipids are synthesized by a rhamnosyltransferase, encoded by the operon, which catalyses the transfer of TDP--rhamnose to 3-(3-hydroxyalkanoyloxy)alkanoic acid (HAA) moieties of various lengths. RhlB is the catalytic protein of the rhamnosyltransferase. is indispensable for rhamnolipid synthesis, but its function is unknown. Using a liquid chromatography/mass spectrometry method, the production of extracellular HAAs by was detected previously and it was demonstrated that they are the actual precursors of rhamnolipid biosynthesis. In this report, evidence is presented indicating that is required for production of HAAs and that these HAAs display potent surface-active properties. . can colonize surfaces by swarming motility, a form of organized translocation requiring the production of wetting agents. Using and mutants it was observed that swarming requires the expression of the gene but does not necessitate rhamnolipid production, as HAAs act as surfactants. Finally, it was shown that the use of ammonium instead of nitrate as source of nitrogen and an excess of available iron both decrease expression and swarming motility.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26154-0
2003-08-01
2020-05-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492005.html?itemId=/content/journal/micro/10.1099/mic.0.26154-0&mimeType=html&fmt=ahah

References

  1. Beal R., Betts W. B.. 2000; Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa . J Appl Microbiol89:158–168
    [Google Scholar]
  2. Bollinger N., Hassett D. J., Iglewski B. H., Costerton J. W., McDermott T. R.. 2001; Gene expression in Pseudomonas aeruginosa : evidence of iron override effects on quorum sensing and biofilm-specific gene regulation. J Bacteriol183:1990–1996
    [Google Scholar]
  3. Burger M. M., Glaser L., Burton R. M.. 1963; The enzymatic synthesis of a rhamnose-containing glycolipid by extracts of Pseudomonas aeruginosa . J Biol Chem238:2595–2602
    [Google Scholar]
  4. Campos-García J., Caro A. D., Nájera R., Miller-Maier R. M., Al-Tahhan R. A., Soberón-Chávez G.. 1998; The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent β -ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol180:4442–4451
    [Google Scholar]
  5. Davey M. E., Caiazza N. C., O'Toole G. A.. 2003; Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol185:1027–1036
    [Google Scholar]
  6. Déziel É., Paquette G., Villemur R., Lépine F., Bisaillon J.-G.. 1996; Biosurfactant production by a soil Pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol62:1908–1912
    [Google Scholar]
  7. Déziel E., Lépine F., Dennie D., Boismenu D., Mamer O. A., Villemur R.. 1999; Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440;244–252
    [Google Scholar]
  8. Déziel E., Lépine F., Milot S., Villemur R.. 2000; Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochim Biophys Acta 1485;145–152
    [Google Scholar]
  9. Déziel E., Comeau Y., Villemur R.. 2001; Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with the emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming and twitching motilities. J Bacteriol183:1195–1204
    [Google Scholar]
  10. Eberl L., Molin S., Givskov M.. 1999; Surface motility of Serratia liquefaciens MG1. J Bacteriol181:1703–1712
    [Google Scholar]
  11. Fraser G. M., Hughes C.. 1999; Swarming motility. Curr Opin Microbiol2:630–635
    [Google Scholar]
  12. Guerra-Santos L. H., Käppeli O., Fiechter A.. 1984; Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl Environ Microbiol48:301–305
    [Google Scholar]
  13. Guerra-Santos L. H., Käppeli O., Fiechter A.. 1986; Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 24:443–448
    [Google Scholar]
  14. Harshey R. M.. 1994; Bees aren't the only ones: swarming in Gram-negative bacteria. Mol Microbiol13:389–394
    [Google Scholar]
  15. Hauser G., Karnovsky M. L.. 1957; Rhamnose and rhamnolipid biosynthesis by Pseudomonas aeruginosa . J Biol Chem224:91–105
    [Google Scholar]
  16. Ishimoto K. S., Lory S.. 1989; Formation of pilin in Pseudomonas aeruginosa requires the alternative σ factor (RpoN) subunit of RNA polymerase. Proc Natl Acad Sci U S A86:1954–1957
    [Google Scholar]
  17. Itoh S., Honda H., Tomita F., Suzuki T.. 1971; Rhamnolipids produced by Pseudomonas aeruginosa grown on n -paraffin (mixture of C12, C13 and C14 fractions). J. Antibiot24:855–859
    [Google Scholar]
  18. Jain D. K., Collins-Thompson D. L., Lee H., Trevors J. T.. 1991; A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods13:271–279
    [Google Scholar]
  19. Jarvis F. G., Johnson M. J.. 1949; A glycolipid produced by Pseudomonas aeruginosa . J Am Chem Soc71:4124–4126
    [Google Scholar]
  20. Johnson M. K., Boese-Marrazzo D.. 1980; Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa . Infect Immun29:1028–1033
    [Google Scholar]
  21. Köhler T., Curty L. K., Barja F., Van Delden C., Pechère J.-C.. 2000; Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol182:5990–5996
    [Google Scholar]
  22. Kownatzki R., Tummler B., Doring G.. 1987; Rhamnolipid of Pseudomonas aeruginosa in sputum of cystic fibrosis patients. Lancet1:1026–1027
    [Google Scholar]
  23. Lang S., Wullbrandt D.. 1999; Rhamnose lipids – biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32
    [Google Scholar]
  24. Lazazzera B. A., Solomon J. M., Grossman A. D.. 1997; An exported peptide functions intracellularly to contribute to cell density signaling in B. subtilis . Cell89:917–925
    [Google Scholar]
  25. Lépine F., Déziel E., Milot S., Villemur R.. 2002; Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy)alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J Mass Spectrom37:41–46
    [Google Scholar]
  26. Lindum P. W., Anthoni U., Christophersen C., Eberl L., Molin S., Givskov M.. 1998; N -acyl-l-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J Bacteriol180:6384–6388
    [Google Scholar]
  27. Maier R. M., Soberón-Chávez G.. 2000; Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol54:625–633
    [Google Scholar]
  28. Matsuyama T., Nakagawa Y.. 1996; Surface-active exolipids: analysis of absolute chemical structures and biological functions. J Microbiol Methods25:165–175
    [Google Scholar]
  29. Matsuyama T., Murakami T., Fujita M., Fujita S., Yano I.. 1986; Extracellular vesicle formation and biosurfactant production by Serratia marcescens . J Gen Microbiol132:865–875
    [Google Scholar]
  30. Matsuyama T., Kaneda K., Ishizuka I., Toida T., Yano I.. 1990; Surface-active novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea . J Bacteriol172:3015–3022
    [Google Scholar]
  31. Matsuyama T., Kaneda K., Nakagawa Y., Isa K., Hara-Hotta H., Yano I.. 1992; A novel extracellular cyclic lipopeptide which promotes flagellum-dependent and -independent spreading growth of Serratia marcescens . J Bacteriol174:1769–1776
    [Google Scholar]
  32. Matsuyama T., Bhasin A., Harshey R. M.. 1995; Mutational analysis of flagellum-independent surface spreading of Serratia marcescens . J Bacteriol177:987–991
    [Google Scholar]
  33. McClure C. D., Schiller N. L.. 1996; Inhibition of macrophage phagocytosis by Pseudomonas aeruginosa rhamnolipids in vitro and in vivo. Curr Microbiol33:109–117
    [Google Scholar]
  34. Mendelson N. H., Salhi B.. 1996; Patterns of reporter gene expression in the phase diagram of Bacillus subtilis colony forms. J Bacteriol178:1980–1989
    [Google Scholar]
  35. Merrick M. J., Edwards R. A.. 1995; Nitrogen control in bacteria. Microbiol Rev59:604–622
    [Google Scholar]
  36. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Mireles J. R. 2nd, Toguchi A., Harshey R. M.. 2001; Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol183:5848–5854
    [Google Scholar]
  38. Mulligan C. N., Gibbs B. F.. 1989; Correlation of nitrogen metabolism with biosurfactant production by Pseudomonas aeruginosa . Appl Environ Microbiol55:3016–3019
    [Google Scholar]
  39. Ochsner U. A., Reiser J.. 1995; Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A92:6424–6428
    [Google Scholar]
  40. Ochsner U. A., Fiechter A., Reiser J.. 1994a; Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem269:19787–19795
    [Google Scholar]
  41. Ochsner U. A., Koch A. K., Fiechter A., Reiser J.. 1994b; Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa . J Bacteriol176:2044–2054
    [Google Scholar]
  42. Ochsner U. A., Hembach T., Fiechter A.. 1995; Production of rhamnolipid biosurfactants. Adv Biochem Eng Biotechnol53:89–118
    [Google Scholar]
  43. Pearson J. P., Pesci E. C., Iglewski B. H.. 1997; Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol179:5756–5767
    [Google Scholar]
  44. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H.. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol179:3127–3132
    [Google Scholar]
  45. Rahim R., Ochsner U. A., Olvera C., Graninger M., Messner P., Lam J. S., Soberon-Chávez G.. 2001; Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol40:708–718
    [Google Scholar]
  46. Rashid M. H., Kornberg A.. 2000; Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A97:4885–4890
    [Google Scholar]
  47. Read R. C., Roberts P., Munro N.. 7 other authors 1992; Effect of Pseudomonas aeruginosa rhamnolipids on mucociliary transport and ciliary beating. J Appl Physiol72:2271–2277
    [Google Scholar]
  48. Rehm B. H. A., Krüger N., Steinbüchel A.. 1998; A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme A transferase. J Biol Chem273:24044–24051
    [Google Scholar]
  49. Rehm B. H. A., Mitsky T. A., Steinbüchel A.. 2001; Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by Pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli . Appl Environ Microbiol67:3102–3109
    [Google Scholar]
  50. Sharma M., Anand S. K.. 2002; Swarming: a coordinated bacterial activity. Curr Science83:707–715
    [Google Scholar]
  51. Siegmund I., Wagner F.. 1991; New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech5:265–268
    [Google Scholar]
  52. Singh P. K., Parsek M. R., Greenberg E. P., Welsh M. J.. 2002; A component of innate immunity prevents bacterial biofilm development. Nature417:552–555
    [Google Scholar]
  53. Smith A. W., Iglewski B. H.. 1989; Transformation of Pseudomonas aeruginosa by electroporation. Nucleic Acids Res17:10509
    [Google Scholar]
  54. Solomon J. M., Lazazzera B. A., Grossman A. D.. 1996; Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis . Genes Dev10:2014–2024
    [Google Scholar]
  55. Toguchi A., Siano M., Burkart M., Harshey R. M.. 2000; Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J Bacteriol182:6308–6321
    [Google Scholar]
  56. Totten P. A., Lara J. C., Lory S.. 1990; The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol172:389–396
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26154-0
Loading
/content/journal/micro/10.1099/mic.0.26154-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error