1887

Abstract

produces one major -1,3-glucanase. Genomic DNA fragments containing the gene were cloned from two strains, DSM1237 (6848 bp) and F7 (9766 bp). Overlapping sequences were 99·9 % identical. The nucleotide sequences contained reading frames for a putative transposase, endo--1,3-1,4-glucanase CelC, a putative transcription regulator of the LacI type, -1,3-glucanase Lic16A and a putative membrane protein. The genes of both strains encoded an identical protein of 1324 aa with a calculated molecular mass of 148 kDa. Lic16A is an unusually complex protein consisting of a leader peptide, a threefold repeat of an S-layer homologous module (SLH), an unknown module, a catalytic module of glycosyl hydrolase family 16 and a fourfold repeat of a carbohydrate-binding module of family CBM4a. The recombinant Lic16A protein was characterized as an endo-1,3(4)--glucanase with a specific activity of 2680 and 340 U mg and a of 0·94 and 2·1 mg ml towards barley -glucan and laminarin, respectively. It was specific for -glucans containing -1,3-linkages with an optimum temperature of 70 °C at pH 6·0. The N-terminal SLH modules were cleaved from the protein as well in as in , but nevertheless bound tightly to the rest of the protein. Lic16A was located on the cell surface from which it could be purified after fractionated solubilization. Its inducible production allowed to grow on -1,3- or -1,3-1,4-glucan.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26153-0
2003-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/4/mic1491021.html?itemId=/content/journal/micro/10.1099/mic.0.26153-0&mimeType=html&fmt=ahah

References

  1. Ali, B. R. S., Romaniec, M. P. M., Hazlewood, G. P. & Freedman, R. B. ( 1995; ). Characterization of the subunits in an apparently homogeneous subpopulation of Clostridium thermocellum cellulosomes. Enz Microb Technol 17, 705–711.[CrossRef]
    [Google Scholar]
  2. Anderson, M. A. & Stone, B. A. ( 1975; ). A new substrate for investigating the specificity of β-glucan hydrolases. FEBS Lett 52, 202–207.[CrossRef]
    [Google Scholar]
  3. Aono, R., Hamamura, M., Yamamoto, M. & Asano, T. ( 1995; ). Isolation of extracellular 28- and 42- kilodalton β-1,3-glucanases and comparison of three β-1,3-glucanases produced by Bacillus circulans IAM1165. Appl Environ Microbiol 61, 122–129.
    [Google Scholar]
  4. Bateman, A., Birney, E., Cerruti, L. & 7 other authors ( 2002; ). The Pfam Protein Families Database. Nucleic Acids Res 30, 276–280.[CrossRef]
    [Google Scholar]
  5. Bayer, E. A., Shoham, Y. & Lamed, R. ( 2000; ). Cellulose-decomposing prokaryotes and their enzyme systems. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd edn. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt. New York: Springer.
  6. Bender, J., Vatcharapijarn, Y. & Jeffries, T. W. ( 1985; ). Characteristics and adaptability of some new isolates of Clostridium thermocellum. Appl Environ Microbiol 49, 475–477.
    [Google Scholar]
  7. Chang, A. C. Y. & Cohen, S. N. ( 1978; ). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J Bacteriol 134, 1141–1156.
    [Google Scholar]
  8. Chuvilskaya, N. A., Golovchenko, N. P., Belokopytov, B. F. & Akimenko, V. K. ( 1987; ). Isolation, identification and some physiological properties of Clostridium thermocellum. Prikl Biokhim Mikrobiol 22, 800–805 (in Russian).
    [Google Scholar]
  9. Coutinho, P. M. & Henrissat, B. ( 1999; ). The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. In Genetics, Biochemistry and Ecology of Cellulose Degradation, pp. 15–23. Edited by K. Ohmiya, K. Hayashi, K. Sakka, Y. Kobayashi, S. Karita & T. Kimura. Tokyo: Uni Publishers.
  10. Del Tito, B. J., Ward, J. M., Hodgson, J., Gershater, C. J. L., Edwards, H., Wysocki, L. A., Watson, F. A., Sathe, G. & Kane, J. F. ( 1995; ). Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli. J Bacteriol 177, 7089–7091.
    [Google Scholar]
  11. Gibbs, M. D., Reeves, R. A., Farrington, G. K., Anderson, P., Williams, D. P. & Bergquist, P. L. ( 2000; ). Multidomain and multifunctional glycosyl hydrolases from the extreme thermophilic Caldicellulosiruptor isolate Tok7B.1. Curr Microbiol 40, 333–340.[CrossRef]
    [Google Scholar]
  12. Gräbnitz, F., Rücknagel, K. P., Seiß, M. & Staudenbauer, W. L. ( 1989; ). Nucleotide sequence of the Clostridium thermocellum bglB gene encoding thermostable β-glucosidase B: Homology to fungal β-glucosidases. Mol Gen Genet 217, 70–76.[CrossRef]
    [Google Scholar]
  13. Guglielmi, G. & Béguin, P. ( 1998; ). Cellulase and hemicellulase genes of Clostridium thermocellum from five independent collections contain few overlaps and are widely scattered across the chromosome. FEMS Lett 161, 209–215.[CrossRef]
    [Google Scholar]
  14. Hagiware, K. & Kikuchi, M. ( 1994; ). US Patent No. 5 320 849.
  15. Hahn, M., Olsen, O., Politz, O., Borriss, R. & Heinemann, U. ( 1995; ). Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3–1,3-glucanase. J Biol Chem 270, 3081–3088.[CrossRef]
    [Google Scholar]
  16. Haima, P., van Sinderen, D., Bron, S. & Venema, G. ( 1990; ). An improved β-galactosidase α-complementation system for molecular cloning in Bacillus subtilis. Gene 93, 41–47.[CrossRef]
    [Google Scholar]
  17. Harada, T. ( 1992; ). The story of research into curdlan and the bacteria producing it. Trends Glycosci Glycotechnol 4, 309–317.[CrossRef]
    [Google Scholar]
  18. Henrissat, B. & Bairoch, A. ( 1996; ). Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316, 695–696 (see also the updated list at http://afmb.cnrs-mrs.fr/~pedro/CAZY).
    [Google Scholar]
  19. Henrissat, B., Teeri, T. T. & Warren, R. A. J. ( 1998; ). A scheme for designating enzymes that hydrolyse the polysaccharides in the cell wall of plants. FEBS Let 425, 352–354.[CrossRef]
    [Google Scholar]
  20. Hernandéz. &, P. E. ( 1982; ). On the utilization of cellobiose and d-glucose by Clostridium thermocellum. Rev Esp Fisiol 38, 473–474.
    [Google Scholar]
  21. Johnson, E. A., Madia, A. & Demain, A. L. ( 1981; ). Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum. Appl Environ Microbiol 41, 1060–1062.
    [Google Scholar]
  22. Keitel, T., Simon, O., Borriss, R. & Heinemann, U. ( 1993; ). Molecular and active-site structure of a Bacillus 1,3–1,4-β-glucanase. Proc Natl Acad Sci USA 90, 5287–5291.[CrossRef]
    [Google Scholar]
  23. Kersulyte, D., Akopyants, N. S., Clifton, S. W., Roe, B. A. & Berg, D. E. ( 1998; ). Novel sequence organization and insertion specificity of IS605 and IS606: chimaeric transposable elements of Helicobacter pylori. Gene 223, 175–186.[CrossRef]
    [Google Scholar]
  24. Komine, Y., Adachi, T., Inokuchi, H. & Ozeki, H. ( 1990; ). Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J Mol Biol 212, 579–598.[CrossRef]
    [Google Scholar]
  25. Kosugi, A., Murashima, K., Tamaru, Y. & Doi, R. H. ( 2002; ). Cell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE. J Bacteriol 184, 884–888.[CrossRef]
    [Google Scholar]
  26. Krah, M., Misselwitz, R., Politz, O., Thomsen, K. K., Welfle, H. & Borriss, R. ( 1998; ). The laminarinase from thermophilic eubacterium Rhodothermus marinus. Eur J Biochem 257, 101–111.[CrossRef]
    [Google Scholar]
  27. Kurokawa, J., Hemjinda, E., Arai, T., Kimura, T., Sakka, K. & Ohmiya, K. ( 2002; ). Clostridium thermocellum cellulase CelT, a family 9 endoglucanase without an Ig-like domain or family 3c carbohydrate-binding module. Appl Microbiol Biotechnol 59, 455–461.[CrossRef]
    [Google Scholar]
  28. Lamed, R., Kenig, R., Morag, E., Yaron, S., Shoham, Y. & Bayer, E. A. ( 2001; ). Nonproteolytic cleavage of aspartyl proline bonds in the cellulosomal scaffoldin subunit from Clostridium thermocellum. Appl Biochem Biotechnol 90, 67–73.[CrossRef]
    [Google Scholar]
  29. Lee, D. S. & Chang, H. G. ( 1995; ). Cloning and expression of a β-1,3-glucanase gene from Bacillus circulans KCTC3004 in Escherichia coli. Biotechnol Lett 17, 355–360.[CrossRef]
    [Google Scholar]
  30. Lemaire, M., Ohayon, H., Gounon, P., Fujino, T. & Béguin, P. ( 1995; ). OlpB, a new outer layer protein of Clostridium thermocellum, and binding of its S-layer-like domains to components of the cell envelope. J Bacteriol 177, 2451–2459.
    [Google Scholar]
  31. Lynd, L. R., Weimer, P. J., van Zyl, W. H. & Pretorius, I. S. ( 2002; ). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66, 506–577.[CrossRef]
    [Google Scholar]
  32. Mahillon, J., Leonard, C. & Chandler, M. ( 1999; ). IS elements as constituents of bacterial genomes. Res Microbiol 150, 675–687.[CrossRef]
    [Google Scholar]
  33. McBee, R. H. ( 1954; ). The characteristics of Clostridium thermocellum. J Bacteriol 67, 505–506.
    [Google Scholar]
  34. Misaki, A. & Kakuta, M. ( 1997; ). Fungal (1–3)-β-d-glucans: chemistry and antitumor activity. In Carbohydrates in Drug Design, pp. 655–689. Edited by Z. J. Witczak & K. A. Nieforth. New York: Marcel Dekker.
  35. Nochur, S. V., Roberts, M. F. & Demain, A. L. ( 1990; ). Mutation of Clostridium thermocellum in the presence of certain carbon sources. FEMS Microbiol Lett 71, 199–204.[CrossRef]
    [Google Scholar]
  36. Nogi, Y. & Horikoshi, K. ( 1990; ). A thermostable alkaline β-1,3-glucanase produced by alkalophilic Bacillus sp. AG-430. Appl Microbiol Biotechnol 32, 704–707.[CrossRef]
    [Google Scholar]
  37. Ozaki, K., Shikata, S., Kawai, S., Ito, S. & Okamoto, K. ( 1990; ). Molecular cloning and nucleotide sequence of a gene for alkaline cellulase from Bacillus sp. KSM-635. J Gen Microbiol 136, 1327–1334.[CrossRef]
    [Google Scholar]
  38. Reichenbecher, M., Lottspeich, F. & Bronnenmeier, K. ( 1997; ). Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium. Eur J Biochem 247, 262–267.[CrossRef]
    [Google Scholar]
  39. Sakka, K., Shimanuki, T. & Shimada, K. ( 1991; ). Nucleotide sequence of celC307 encoding endoglucanase C307 of Clostridium sp. strain F1. Agric Biol Chem 55, 347–350.[CrossRef]
    [Google Scholar]
  40. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  41. Schenk, P. M., Baumann, S., Mattes, R. & Steinbiss, H. H. ( 1995; ). Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare Arg tRNAs. Biotechniques 19, 196–200.
    [Google Scholar]
  42. Schimming, S., Schwarz, W. H. & Staudenbauer, W. L. ( 1992; ). Structure of the Clostridium thermocellum gene licB and the encoded β-1,3–1,4-glucanase. A catalytic region homologous to Bacillus lichenases joined to the reiterated domain of clostridial cellulases. Eur J Biochem 204, 13–19.[CrossRef]
    [Google Scholar]
  43. Schwarz, W. H. ( 2001; ). The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56, 634–649.[CrossRef]
    [Google Scholar]
  44. Schwarz, W. H., Bronnenmeier, K. & Staudenbauer, W. L. ( 1985; ). Molecular cloning of Clostridium thermocellum genes involved in β-glucan degradation in bacteriophage Lambda. Biotechnol Let 7, 859–864.[CrossRef]
    [Google Scholar]
  45. Schwarz, W. H., Bronnenmeier, K., Gräbnitz, F. & Staudenbauer, W. L. ( 1987; ). Activity staining of cellulases in polyacrylamide gels containing mixed linkage β-glucans. Anal Biochem 164, 72–77.[CrossRef]
    [Google Scholar]
  46. Schwarz, W. H., Schimming, S. & Staudenbauer, W. L. ( 1988a; ). Isolation of a Clostridium thermocellum gene encoding a thermostable β-1,3-glucanase (laminarinase). Biotechnol Lett 10, 225–230.[CrossRef]
    [Google Scholar]
  47. Schwarz, W. H., Schimming, S., Rücknagel, K. P., Burgschaiger, S., Kreil, G. & Staudenbauer, W. L. ( 1988b; ). Nucleotide sequence of the celC gene encoding endoglucanase C of Clostridium thermocellum. Gene 63, 23–30.[CrossRef]
    [Google Scholar]
  48. Spilliaert, R., Hreggvidsson, G. O., Kristjansson, J. K., Eggertsson, G. & Palsdottir, A. ( 1994; ). Cloning and sequencing of a Rhodothermus marinus gene, bglA, coding for a thermostable β-glucanase and its expression in Escherichia coli. Eur J Biochem 224, 923–930.[CrossRef]
    [Google Scholar]
  49. Stainthorpe, A. C. & Williams, R. A. D. ( 1988; ). Isolation and properties of Clostridium thermocellum from Icelandic hot springs. Int J Syst Bacteriol 38, 119–121.[CrossRef]
    [Google Scholar]
  50. Tailliez, P., Girard, H., Millet, J. & Béguin, P. ( 1989; ). Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium thermocellum. Appl Environ Microbiol 55, 207–211.
    [Google Scholar]
  51. Tanaka, K., Kawaguchi, T., Imada, Y., Ooi, T. & Arai, M. ( 1995; ). Purification and properties of cellobiose phosphorylase from Clostridium thermocellum. J Ferment Bioeng 79, 212–216.[CrossRef]
    [Google Scholar]
  52. Tuka, K., Zverlov, V. V., Bumazkin, B. K., Velikodvorsakaya, G. A. & Strongin, A. Y. ( 1990; ). Cloning and expression of Clostridium thermocellum genes coding for thermostable exoglucanases (cellobiohydrolases) in Escherichia coli cells. Biochem Biophys Res Commun 169, 1055–1060.[CrossRef]
    [Google Scholar]
  53. von Heijne, G. ( 1986; ). A new method for predicting signal sequence cleavage sites. Nucleic Acid Res 14, 4683–4690.[CrossRef]
    [Google Scholar]
  54. Wolf, M., Geczi, A., Simon, O. & Borriss, R. ( 1995; ). Genes encoding xylan and β-glucan hydrolysing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. Microbiol 141, 281–290.[CrossRef]
    [Google Scholar]
  55. Wood, T. M. & Bhat, K. M. ( 1988; ). Methods for measuring cellulase activities. Methods Enzymol 160, 87–112.
    [Google Scholar]
  56. Yahata, N., Watanabe, T., Nakamura, Y., Kamimiya, Y. & Tanaka, H. ( 1990; ). Structure of the gene encoding β-1,3-glucanase A1 of Bacillus circulans WL-12. Gene 86, 113–117.[CrossRef]
    [Google Scholar]
  57. Zdanovsky, A. G. & Zdanovskaia, M. V. ( 2000; ). Simple and efficient method for heterologous expression of clostridial proteins. Appl Environ Microbiol 66, 3166–3173.[CrossRef]
    [Google Scholar]
  58. Zverlov, V. V., Fuchs, K. P., Schwarz, W. H. & Velikodvorskaya, G. A. ( 1994; ). Purification and cellulosomal localization of Clostridium thermocellum mixed linkage β-glucanase LicB (1,3–1,4-β-d-glucanase). Biotechnol Lett 16, 29–34.[CrossRef]
    [Google Scholar]
  59. Zverlov, V., Volkov, I. Y., Velikodvorskaya, T. V. & Schwarz, W. H. ( 1997a; ). Highly thermostable endo-1,3-β-glucanase (laminarinase) LamA from Thermotoga neapolitana: nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology 143, 1701–1708.[CrossRef]
    [Google Scholar]
  60. Zverlov, V. V., Volkov, I. Y., Velikodvorskaya, T. V. & Schwarz, W. H. ( 1997b; ). Thermotoga neapolitana bglB gene, upstream of lamA, encodes a highly thermostable β-glucosidase that is a laminaribiase. Microbiology 143, 3537–3542.[CrossRef]
    [Google Scholar]
  61. Zverlov, V. V., Mahr, S., Riedel, K. & Bronnenmeier, K. ( 1998; ). Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile “Anaerocellum thermophilum” with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology 144, 457–465.[CrossRef]
    [Google Scholar]
  62. Zverlov, V. V., Volkov, I. Y., Velikodvorskaya, G. A. & Schwarz, W. H. ( 2001; ). The binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana: differences in β-glucan binding within family CBM4. Microbiology 147, 621–629.
    [Google Scholar]
  63. Zverlov, V. V., Fuchs, K. P. & Schwarz, W. H. ( 2002; ). Chi18A, the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum. Appl Environ Microbiol 68, 3176–3179.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26153-0
Loading
/content/journal/micro/10.1099/mic.0.26153-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error