1887

Abstract

produces one major -1,3-glucanase. Genomic DNA fragments containing the gene were cloned from two strains, DSM1237 (6848 bp) and F7 (9766 bp). Overlapping sequences were 99·9 % identical. The nucleotide sequences contained reading frames for a putative transposase, endo--1,3-1,4-glucanase CelC, a putative transcription regulator of the LacI type, -1,3-glucanase Lic16A and a putative membrane protein. The genes of both strains encoded an identical protein of 1324 aa with a calculated molecular mass of 148 kDa. Lic16A is an unusually complex protein consisting of a leader peptide, a threefold repeat of an S-layer homologous module (SLH), an unknown module, a catalytic module of glycosyl hydrolase family 16 and a fourfold repeat of a carbohydrate-binding module of family CBM4a. The recombinant Lic16A protein was characterized as an endo-1,3(4)--glucanase with a specific activity of 2680 and 340 U mg and a of 0·94 and 2·1 mg ml towards barley -glucan and laminarin, respectively. It was specific for -glucans containing -1,3-linkages with an optimum temperature of 70 °C at pH 6·0. The N-terminal SLH modules were cleaved from the protein as well in as in , but nevertheless bound tightly to the rest of the protein. Lic16A was located on the cell surface from which it could be purified after fractionated solubilization. Its inducible production allowed to grow on -1,3- or -1,3-1,4-glucan.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26153-0
2003-04-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/4/mic1491021.html?itemId=/content/journal/micro/10.1099/mic.0.26153-0&mimeType=html&fmt=ahah

References

  1. Ali B. R. S., Romaniec M. P. M., Hazlewood G. P., Freedman R. B.. 1995; Characterization of the subunits in an apparently homogeneous subpopulation of Clostridium thermocellum cellulosomes. Enz Microb Technol17:705–711
    [Google Scholar]
  2. Anderson M. A., Stone B. A.. 1975; A new substrate for investigating the specificity of β -glucan hydrolases. FEBS Lett52:202–207
    [Google Scholar]
  3. Aono R., Hamamura M., Yamamoto M., Asano T.. 1995; Isolation of extracellular 28- and 42- kilodalton β -1,3-glucanases and comparison of three β -1,3-glucanases produced by Bacillus circulans IAM1165. Appl Environ Microbiol61:122–129
    [Google Scholar]
  4. Bateman A., Birney E., Cerruti L.. 7 other authors 2002; The Pfam Protein Families Database. Nucleic Acids Res30:276–280
    [Google Scholar]
  5. Bayer E. A., Shoham Y., Lamed R.. 2000; Cellulose-decomposing prokaryotes and their enzyme systems. In The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community , 3rd edn. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E.. New York: Springer;
    [Google Scholar]
  6. Bender J., Vatcharapijarn Y., Jeffries T. W.. 1985; Characteristics and adaptability of some new isolates of Clostridium thermocellum . Appl Environ Microbiol49:475–477
    [Google Scholar]
  7. Chang A. C. Y., Cohen S. N.. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the p15A cryptic miniplasmid. J Bacteriol134:1141–1156
    [Google Scholar]
  8. Chuvilskaya N. A., Golovchenko N. P., Belokopytov B. F., Akimenko V. K.. 1987; Isolation, identification and some physiological properties of Clostridium thermocellum . Prikl Biokhim Mikrobiol22:800–805 in Russian
    [Google Scholar]
  9. Coutinho P. M., Henrissat B.. 1999; The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. In Genetics, Biochemistry and Ecology of Cellulose Degradation pp 15–23 Edited by Ohmiya K., Hayashi K., Sakka K., Kobayashi Y., Karita S., Kimura T.. Tokyo: Uni Publishers;
    [Google Scholar]
  10. Del Tito B. J., Ward J. M., Hodgson J., Gershater C. J. L., Edwards H., Wysocki L. A., Watson F. A., Sathe G., Kane J. F.. 1995; Effects of a minor isoleucyl tRNA on heterologous protein translation in Escherichia coli . J Bacteriol177:7089–7091
    [Google Scholar]
  11. Gibbs M. D., Reeves R. A., Farrington G. K., Anderson P., Williams D. P., Bergquist P. L.. 2000; Multidomain and multifunctional glycosyl hydrolases from the extreme thermophilic Caldicellulosiruptor isolate Tok7B.1. Curr Microbiol40:333–340
    [Google Scholar]
  12. Gräbnitz F., Rücknagel K. P., Seiß M., Staudenbauer W. L.. 1989; Nucleotide sequence of the Clostridium thermocellum bglB gene encoding thermostable β -glucosidase B: Homology to fungal β -glucosidases. Mol Gen Genet217:70–76
    [Google Scholar]
  13. Guglielmi G., Béguin P.. 1998; Cellulase and hemicellulase genes of Clostridium thermocellum from five independent collections contain few overlaps and are widely scattered across the chromosome. FEMS Lett161:209–215
    [Google Scholar]
  14. Hagiware K., Kikuchi M.. 1994; US Patent No. 5 320 849..
  15. Hahn M., Olsen O., Politz O., Borriss R., Heinemann U.. 1995; Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3–1,3-glucanase. J Biol Chem270:3081–3088
    [Google Scholar]
  16. Haima P., van Sinderen D., Bron S., Venema G.. 1990; An improved β -galactosidase α -complementation system for molecular cloning in Bacillus subtilis . Gene93:41–47
    [Google Scholar]
  17. Harada T.. 1992; The story of research into curdlan and the bacteria producing it. Trends Glycosci Glycotechnol4:309–317
    [Google Scholar]
  18. Henrissat B., Bairoch A.. 1996; Updating the sequence-based classification of glycosyl hydrolases. Biochem J316:695–696 see also the updated list at
    [Google Scholar]
  19. Henrissat B., Teeri T. T., Warren R. A. J.. 1998; A scheme for designating enzymes that hydrolyse the polysaccharides in the cell wall of plants. FEBS Let425:352–354
    [Google Scholar]
  20. Hernandéz P. E.. 1982; On the utilization of cellobiose and d-glucose by Clostridium thermocellum . Rev Esp Fisiol38:473–474
    [Google Scholar]
  21. Johnson E. A., Madia A., Demain A. L.. 1981; Chemically defined minimal medium for growth of the anaerobic cellulolytic thermophile Clostridium thermocellum . Appl Environ Microbiol41:1060–1062
    [Google Scholar]
  22. Keitel T., Simon O., Borriss R., Heinemann U.. 1993; Molecular and active-site structure of a Bacillus 1,3–1,4- β -glucanase. Proc Natl Acad Sci USA90:5287–5291
    [Google Scholar]
  23. Kersulyte D., Akopyants N. S., Clifton S. W., Roe B. A., Berg D. E.. 1998; Novel sequence organization and insertion specificity of IS 605 and IS 606 : chimaeric transposable elements of Helicobacter pylori . Gene223:175–186
    [Google Scholar]
  24. Komine Y., Adachi T., Inokuchi H., Ozeki H.. 1990; Genomic organization and physical mapping of the transfer RNA genes in Escherichia coli K12. J Mol Biol212:579–598
    [Google Scholar]
  25. Kosugi A., Murashima K., Tamaru Y., Doi R. H.. 2002; Cell-surface-anchoring role of N-terminal surface layer homology domains of Clostridium cellulovorans EngE. J Bacteriol184:884–888
    [Google Scholar]
  26. Krah M., Misselwitz R., Politz O., Thomsen K. K., Welfle H., Borriss R.. 1998; The laminarinase from thermophilic eubacterium Rhodothermus marinus . Eur J Biochem257:101–111
    [Google Scholar]
  27. Kurokawa J., Hemjinda E., Arai T., Kimura T., Sakka K., Ohmiya K.. 2002; Clostridium thermocellum cellulase CelT, a family 9 endoglucanase without an Ig-like domain or family 3c carbohydrate-binding module. Appl Microbiol Biotechnol59:455–461
    [Google Scholar]
  28. Lamed R., Kenig R., Morag E., Yaron S., Shoham Y., Bayer E. A.. 2001; Nonproteolytic cleavage of aspartyl proline bonds in the cellulosomal scaffoldin subunit from Clostridium thermocellum . Appl Biochem Biotechnol90:67–73
    [Google Scholar]
  29. Lee D. S., Chang H. G.. 1995; Cloning and expression of a β -1,3-glucanase gene from Bacillus circulans KCTC3004 in Escherichia coli . Biotechnol Lett17:355–360
    [Google Scholar]
  30. Lemaire M., Ohayon H., Gounon P., Fujino T., Béguin P.. 1995; OlpB, a new outer layer protein of Clostridium thermocellum , and binding of its S-layer-like domains to components of the cell envelope. J Bacteriol177:2451–2459
    [Google Scholar]
  31. Lynd L. R., Weimer P. J., van Zyl W. H., Pretorius I. S.. 2002; Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev66:506–577
    [Google Scholar]
  32. Mahillon J., Leonard C., Chandler M.. 1999; IS elements as constituents of bacterial genomes. Res Microbiol150:675–687
    [Google Scholar]
  33. McBee R. H.. 1954; The characteristics of Clostridium thermocellum . J Bacteriol67:505–506
    [Google Scholar]
  34. Misaki A., Kakuta M.. 1997; Fungal (1–3)- β -d-glucans: chemistry and antitumor activity. In Carbohydrates in Drug Design pp 655–689 Edited by Witczak Z. J., Nieforth K. A. New York: Marcel Dekker;
    [Google Scholar]
  35. Nochur S. V., Roberts M. F., Demain A. L.. 1990; Mutation of Clostridium thermocellum in the presence of certain carbon sources. FEMS Microbiol Lett71:199–204
    [Google Scholar]
  36. Nogi Y., Horikoshi K.. 1990; A thermostable alkaline β -1,3-glucanase produced by alkalophilic Bacillus sp. AG-430. Appl Microbiol Biotechnol32:704–707
    [Google Scholar]
  37. Ozaki K., Shikata S., Kawai S., Ito S., Okamoto K.. 1990; Molecular cloning and nucleotide sequence of a gene for alkaline cellulase from Bacillus sp. KSM-635. J Gen Microbiol136:1327–1334
    [Google Scholar]
  38. Reichenbecher M., Lottspeich F., Bronnenmeier K.. 1997; Purification and properties of a cellobiose phosphorylase (CepA) and a cellodextrin phosphorylase (CepB) from the cellulolytic thermophile Clostridium stercorarium . Eur J Biochem247:262–267
    [Google Scholar]
  39. Sakka K., Shimanuki T., Shimada K.. 1991; Nucleotide sequence of celC307 encoding endoglucanase C307 of Clostridium sp. strain F1. Agric Biol Chem55:347–350
    [Google Scholar]
  40. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Schenk P. M., Baumann S., Mattes R., Steinbiss H. H.. 1995; Improved high-level expression system for eukaryotic genes in Escherichia coli using T7 RNA polymerase and rare Arg tRNAs. Biotechniques19:196–200
    [Google Scholar]
  42. Schimming S., Schwarz W. H., Staudenbauer W. L.. 1992; Structure of the Clostridium thermocellum gene licB and the encoded β -1,3–1,4-glucanase. A catalytic region homologous to Bacillus lichenases joined to the reiterated domain of clostridial cellulases. Eur J Biochem204:13–19
    [Google Scholar]
  43. Schwarz W. H.. 2001; The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol56:634–649
    [Google Scholar]
  44. Schwarz W. H., Bronnenmeier K., Staudenbauer W. L.. 1985; Molecular cloning of Clostridium thermocellum genes involved in β -glucan degradation in bacteriophage Lambda . Biotechnol Let7:859–864
    [Google Scholar]
  45. Schwarz W. H., Bronnenmeier K., Gräbnitz F., Staudenbauer W. L.. 1987; Activity staining of cellulases in polyacrylamide gels containing mixed linkage β -glucans. Anal Biochem164:72–77
    [Google Scholar]
  46. Schwarz W. H., Schimming S., Staudenbauer W. L.. 1988a; Isolation of a Clostridium thermocellum gene encoding a thermostable β -1,3-glucanase (laminarinase). Biotechnol Lett10:225–230
    [Google Scholar]
  47. Schwarz W. H., Schimming S., Rücknagel K. P., Burgschaiger S., Kreil G., Staudenbauer W. L.. 1988b; Nucleotide sequence of the celC gene encoding endoglucanase C of Clostridium thermocellum . Gene63:23–30
    [Google Scholar]
  48. Spilliaert R., Hreggvidsson G. O., Kristjansson J. K., Eggertsson G., Palsdottir A.. 1994; Cloning and sequencing of a Rhodothermus marinus gene, bglA , coding for a thermostable β -glucanase and its expression in Escherichia coli . Eur J Biochem224:923–930
    [Google Scholar]
  49. Stainthorpe A. C., Williams R. A. D.. 1988; Isolation and properties of Clostridium thermocellum from Icelandic hot springs. Int J Syst Bacteriol38:119–121
    [Google Scholar]
  50. Tailliez P., Girard H., Millet J., Béguin P.. 1989; Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium thermocellum . Appl Environ Microbiol55:207–211
    [Google Scholar]
  51. Tanaka K., Kawaguchi T., Imada Y., Ooi T., Arai M.. 1995; Purification and properties of cellobiose phosphorylase from Clostridium thermocellum . J Ferment Bioeng79:212–216
    [Google Scholar]
  52. Tuka K., Zverlov V. V., Bumazkin B. K., Velikodvorsakaya G. A., Strongin A. Y.. 1990; Cloning and expression of Clostridium thermocellum genes coding for thermostable exoglucanases (cellobiohydrolases) in Escherichia coli cells. Biochem Biophys Res Commun169:1055–1060
    [Google Scholar]
  53. von Heijne G.. 1986; A new method for predicting signal sequence cleavage sites. Nucleic Acid Res14:4683–4690
    [Google Scholar]
  54. Wolf M., Geczi A., Simon O., Borriss R.. 1995; Genes encoding xylan and β -glucan hydrolysing enzymes in Bacillus subtilis : characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. Microbiol141:281–290
    [Google Scholar]
  55. Wood T. M., Bhat K. M.. 1988; Methods for measuring cellulase activities. Methods Enzymol160:87–112
    [Google Scholar]
  56. Yahata N., Watanabe T., Nakamura Y., Kamimiya Y., Tanaka H.. 1990; Structure of the gene encoding β -1,3-glucanase A1 of Bacillus circulans WL-12. Gene86:113–117
    [Google Scholar]
  57. Zdanovsky A. G., Zdanovskaia M. V.. 2000; Simple and efficient method for heterologous expression of clostridial proteins. Appl Environ Microbiol66:3166–3173
    [Google Scholar]
  58. Zverlov V. V., Fuchs K. P., Schwarz W. H., Velikodvorskaya G. A.. 1994; Purification and cellulosomal localization of Clostridium thermocellum mixed linkage β -glucanase LicB (1,3–1,4- β -d-glucanase). Biotechnol Lett16:29–34
    [Google Scholar]
  59. Zverlov V., Volkov I. Y., Velikodvorskaya T. V., Schwarz W. H.. 1997a; Highly thermostable endo-1,3- β -glucanase (laminarinase) LamA from Thermotoga neapolitana : nucleotide sequence of the gene and characterization of the recombinant gene product. Microbiology143:1701–1708
    [Google Scholar]
  60. Zverlov V. V., Volkov I. Y., Velikodvorskaya T. V., Schwarz W. H.. 1997b; Thermotoga neapolitana bglB gene, upstream of lamA , encodes a highly thermostable β -glucosidase that is a laminaribiase. Microbiology143:3537–3542
    [Google Scholar]
  61. Zverlov V. V., Mahr S., Riedel K., Bronnenmeier K.. 1998; Properties and gene structure of a bifunctional cellulolytic enzyme (CelA) from the extreme thermophile “ Anaerocellum thermophilum ” with separate glycosyl hydrolase family 9 and 48 catalytic domains. Microbiology144:457–465
    [Google Scholar]
  62. Zverlov V. V., Volkov I. Y., Velikodvorskaya G. A., Schwarz W. H.. 2001; The binding pattern of two carbohydrate-binding modules of laminarinase Lam16A from Thermotoga neapolitana : differences in β -glucan binding within family CBM4. Microbiology147:621–629
    [Google Scholar]
  63. Zverlov V. V., Fuchs K. P., Schwarz W. H.. 2002; Chi18A, the endochitinase in the cellulosome of the thermophilic, cellulolytic bacterium Clostridium thermocellum . Appl Environ Microbiol68:3176–3179
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26153-0
Loading
/content/journal/micro/10.1099/mic.0.26153-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error