1887

Abstract

Temporal transcription of phage adh was analysed during lytic reproduction. Based on Northern hybridizations the phage genome was divided into regions of early, middle and late transcription. Eight groups of overlapping transcripts, probably originating from common precursors, were distinguished. Early transcription of a 10·9 kb region adjacent to the lytic/lysogenic switch started within the first 10 min of infection and produced three groups of mRNAs mostly related to DNA replication. Four middle transcripts were observed 30 min after infection, corresponding to an 8·5 kb genomic region, which started at the replication origin () and encompassed a DNA packaging function and the site. Three groups of late transcripts were first observed 50 min after infection, corresponding to a 21·1 kb region between the middle region and the attachment site (), encoding functions for capsid morphogenesis and host cell lysis. A fourth group of late-appearing mRNAs was divergently transcribed from the 3·2 kb section between and the lytic/lysogenic switch, including the repressor and integrase genes. Except for one set of early mRNAs, all the transcripts persisted until the end of the reproduction cycle. Two confirmed and two predicted promoters were assigned to transcript 5′ ends in the early region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26150-0
2003-10-01
2020-03-31
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492987.html?itemId=/content/journal/micro/10.1099/mic.0.26150-0&mimeType=html&fmt=ahah

References

  1. Altermann E., Klein J. R., Henrich B.. 1999a; Synthesis and automated detection of fluorescently labeled primer extension products. Biotechniques26:98–101
    [Google Scholar]
  2. Altermann E., Klein J. R., Henrich B.. 1999b; Primary structure and features of the genome of the Lactobacillus gasseri temperate bacteriophage ϕ adh. Gene236:333–346
    [Google Scholar]
  3. Brendel V., Trifonov E. N.. 1984; A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res12:4411–4427
    [Google Scholar]
  4. Brody E. N., Kassavetis G. A., Ouhammouch M., Sanders G. M., Tinker R. L., Geiduschek E. P.. 1995; Old phage, new insights: two recently recognized mechanisms of transcriptional regulation in bacteriophage T4 development. FEMS Microbiol Lett128:1–8
    [Google Scholar]
  5. Brüssow H.. 2001; Phages of dairy bacteria. Annu Rev Microbiol55:283–303
    [Google Scholar]
  6. Chandry P. S., Davidson B. E., Hillier A. J.. 1994; Temporal transcription map of the Lactococcus lactis bacteriophage sk1. Microbiology140:2251–2261
    [Google Scholar]
  7. Conway P. L., Gorbach S. L., Goldin B. R.. 1987; Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci70:1–12
    [Google Scholar]
  8. De Man J. C., Rogosa M., Sharpe M. E.. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol23:130–135
    [Google Scholar]
  9. Desiere F., Pridmore R. D., Brüssow H.. 2000; Comparative genomics of the late gene cluster from Lactobacillus phages. Virology275:294–305
    [Google Scholar]
  10. de Vos W. M., Vos P., de Haard H., Boerrigter I.. 1989; Cloning and expression of the Lactococcus lactis subsp. cremoris SK11 gene encoding an extracellular serine proteinase. Gene85:169–176
    [Google Scholar]
  11. Engel G., Altermann E., Klein J. R., Henrich B.. 1998; Structure of a genome region of the Lactobacillus gasseri temperate phage ϕ adh covering a repressor gene and cognate promoters. Gene210:61–70
    [Google Scholar]
  12. Fremaux C., De Antoni G. L., Raya R. R., Klaenhammer T. R.. 1993; Genetic organization and sequence of the region encoding integrative functions from Lactobacillus gasseri temperate bacteriophage ϕ adh. Gene 126:61–66
    [Google Scholar]
  13. Gasson M. J.. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol154:1–9
    [Google Scholar]
  14. Guarner F., Schaafsma G. J.. 1998; Probiotics. Int J Food Microbiol39:237–238
    [Google Scholar]
  15. Henrich B., Binishofer B., Bläsi U.. 1995; Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage ϕ adh. J Bacteriol177:723–732
    [Google Scholar]
  16. Kleeman E. G., Klaenhammer T. R.. 1982; Adherence of Lactobacillus species to human fetal intestinal cells. J Dairy Sci65:2063–2069
    [Google Scholar]
  17. Klein J. R., Schmidt U., Plapp R.. 1994; Cloning, heterologous expression, and sequencing of a novel proline iminopeptidase gene, pepI , from Lactobacillus delbrueckii subsp. lactis DSM 7290. Microbiology140:1133–1139
    [Google Scholar]
  18. Lee Y. K., Salminen S.. 1995; The coming age of probiotics. Trends Food Sci Technol6:241–245
    [Google Scholar]
  19. Lubbers M. W., Schofield K., Waterfield N. R., Polzin K. M.. 1998; Transcription analysis of the prolate-headed lactococcal bacteriophage c2. J Bacteriol180:4487–4496
    [Google Scholar]
  20. Luchansky J. B., Kleeman E. G., Raya R. R., Klaenhammer T. R.. 1989; Genetic transfer systems for delivery of plasmid deoxyribonucleic acid to Lactobacillus acidophilus ADH: conjugation, electroporation, and transduction. J Dairy Sci72:1408–1417
    [Google Scholar]
  21. Madsen P. L., Hammer K.. 1998; Temporal transcription of the lactococcal temperate phage TP901-1 and DNA sequence of the early promoter region. Microbiology144:2203–2215
    [Google Scholar]
  22. Martin A. C., Lopez R., Garcia P.. 1996; Analysis of the complete nucleotide sequence and functional organization of the genome of Streptococcus pneumoniae bacteriophage Cp-1. J Virol70:3678–3687
    [Google Scholar]
  23. Matern H. T., Klein J. R., Henrich B., Plapp R.. 1994; Determination and comparison of Lactobacillus delbrueckii ssp. lactis DSM7290 promoter sequences. FEMS Microbiol Lett122:121–128
    [Google Scholar]
  24. Neu T., Henrich B.. 2003; New thermosensitive delivery vector and its use to enable nisin-controlled gene expression in Lactobacillus gasseri . Appl Environ Microbiol69:1377–1382
    [Google Scholar]
  25. Nicholson A. W.. 1999; Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol Rev23:371–390
    [Google Scholar]
  26. Pedrosa M. C., Golner B. B., Goldin B. R., Barakat S., Dallal G. E., Russell R. M.. 1995; Survival of yogurt-containing organisms and Lactobacillus gasseri (ADH) and their effect on bacterial enzyme activity in the gastrointestinal tract of healthy and hypochlorhydric elderly subjects. Am J Clin Nutr61:353–359
    [Google Scholar]
  27. Ponting C. P., Aravind L.. 1997; PAS: a multifunctional domain family comes to light. Curr Biol7:R674–R677
    [Google Scholar]
  28. Raya R. R., Kleeman E. G., Luchansky J. B., Klaenhammer T. R.. 1989; Characterization of the temperate bacteriophage ϕ adh and plasmid transduction in Lactobacillus acidophilus ADH. Appl Environ Microbiol55:2206–2213
    [Google Scholar]
  29. Raya R. R., Fremaux C., De Antoni G. L., Klaenhammer T. R.. 1992; Site-specific integration of the temperate bacteriophage ϕ adh into the Lactobacillus gasseri chromosome and molecular characterization of the phage ( attP ) and bacterial ( attB ) attachment sites. J Bacteriol174:5584–5592
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laborarory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Selden R. F.. 1987; Analysis of RNA by Northern hybridization. In Current Protocols in Molecular Biology pp4.9.1–4.9.8 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  32. Smith M. C., Burns R. N., Wilson S. E., Gregory M. A.. 1999; The complete genome sequence of the Streptomyces temperate phage ϕ C31: evolutionary relationships to other viruses. Nucleic Acids Res27:2145–2155
    [Google Scholar]
  33. Ventura M., Foley S., Bruttin A., Chennoufi S. C., Canchaya C., Brüssow H.. 2002; Transcription mapping as a tool in phage genomics: the case of the temperate Streptococcus thermophilus phage Sfi21. Virology296:62–76
    [Google Scholar]
  34. Wegmann U., Klein J. R., Drumm I., Kuipers O. P., Henrich B.. 1999; Introduction of peptidase genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and controlled expression. Appl Environ Microbiol65:4729–4733
    [Google Scholar]
  35. Wells J. M., Wilson P. W., Le Page R. W.. 1993; Improved cloning vectors and transformation procedure for Lactococcus lactis . J Appl Bacteriol74:629–636
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26150-0
Loading
/content/journal/micro/10.1099/mic.0.26150-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error