1887

Abstract

Temporal transcription of phage adh was analysed during lytic reproduction. Based on Northern hybridizations the phage genome was divided into regions of early, middle and late transcription. Eight groups of overlapping transcripts, probably originating from common precursors, were distinguished. Early transcription of a 10·9 kb region adjacent to the lytic/lysogenic switch started within the first 10 min of infection and produced three groups of mRNAs mostly related to DNA replication. Four middle transcripts were observed 30 min after infection, corresponding to an 8·5 kb genomic region, which started at the replication origin () and encompassed a DNA packaging function and the site. Three groups of late transcripts were first observed 50 min after infection, corresponding to a 21·1 kb region between the middle region and the attachment site (), encoding functions for capsid morphogenesis and host cell lysis. A fourth group of late-appearing mRNAs was divergently transcribed from the 3·2 kb section between and the lytic/lysogenic switch, including the repressor and integrase genes. Except for one set of early mRNAs, all the transcripts persisted until the end of the reproduction cycle. Two confirmed and two predicted promoters were assigned to transcript 5′ ends in the early region.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26150-0
2003-10-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/10/mic1492987.html?itemId=/content/journal/micro/10.1099/mic.0.26150-0&mimeType=html&fmt=ahah

References

  1. Altermann E., Klein J. R., Henrich B. 1999a; Synthesis and automated detection of fluorescently labeled primer extension products. Biotechniques 26:98–101
    [Google Scholar]
  2. Altermann E., Klein J. R., Henrich B. 1999b; Primary structure and features of the genome of the Lactobacillus gasseri temperate bacteriophage ϕ adh. Gene 236:333–346
    [Google Scholar]
  3. Brendel V., Trifonov E. N. 1984; A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res 12:4411–4427
    [Google Scholar]
  4. Brody E. N., Kassavetis G. A., Ouhammouch M., Sanders G. M., Tinker R. L., Geiduschek E. P. 1995; Old phage, new insights: two recently recognized mechanisms of transcriptional regulation in bacteriophage T4 development. FEMS Microbiol Lett 128:1–8
    [Google Scholar]
  5. Brüssow H. 2001; Phages of dairy bacteria. Annu Rev Microbiol 55:283–303
    [Google Scholar]
  6. Chandry P. S., Davidson B. E., Hillier A. J. 1994; Temporal transcription map of the Lactococcus lactis bacteriophage sk1. Microbiology 140:2251–2261
    [Google Scholar]
  7. Conway P. L., Gorbach S. L., Goldin B. R. 1987; Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci 70:1–12
    [Google Scholar]
  8. De Man J. C., Rogosa M., Sharpe M. E. 1960; A medium for the cultivation of lactobacilli. J Appl Bacteriol 23:130–135
    [Google Scholar]
  9. Desiere F., Pridmore R. D., Brüssow H. 2000; Comparative genomics of the late gene cluster from Lactobacillus phages. Virology 275:294–305
    [Google Scholar]
  10. de Vos W. M., Vos P., de Haard H., Boerrigter I. 1989; Cloning and expression of the Lactococcus lactis subsp. cremoris SK11 gene encoding an extracellular serine proteinase. Gene 85:169–176
    [Google Scholar]
  11. Engel G., Altermann E., Klein J. R., Henrich B. 1998; Structure of a genome region of the Lactobacillus gasseri temperate phage ϕ adh covering a repressor gene and cognate promoters. Gene 210:61–70
    [Google Scholar]
  12. Fremaux C., De Antoni G. L., Raya R. R., Klaenhammer T. R. 1993; Genetic organization and sequence of the region encoding integrative functions from Lactobacillus gasseri temperate bacteriophage ϕ adh. Gene 126:61–66
    [Google Scholar]
  13. Gasson M. J. 1983; Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1–9
    [Google Scholar]
  14. Guarner F., Schaafsma G. J. 1998; Probiotics. Int J Food Microbiol 39:237–238
    [Google Scholar]
  15. Henrich B., Binishofer B., Bläsi U. 1995; Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage ϕ adh. J Bacteriol 177:723–732
    [Google Scholar]
  16. Kleeman E. G., Klaenhammer T. R. 1982; Adherence of Lactobacillus species to human fetal intestinal cells. J Dairy Sci 65:2063–2069
    [Google Scholar]
  17. Klein J. R., Schmidt U., Plapp R. 1994; Cloning, heterologous expression, and sequencing of a novel proline iminopeptidase gene, pepI , from Lactobacillus delbrueckii subsp. lactis DSM 7290. Microbiology 140:1133–1139
    [Google Scholar]
  18. Lee Y. K., Salminen S. 1995; The coming age of probiotics. Trends Food Sci Technol 6:241–245
    [Google Scholar]
  19. Lubbers M. W., Schofield K., Waterfield N. R., Polzin K. M. 1998; Transcription analysis of the prolate-headed lactococcal bacteriophage c2. J Bacteriol 180:4487–4496
    [Google Scholar]
  20. Luchansky J. B., Kleeman E. G., Raya R. R., Klaenhammer T. R. 1989; Genetic transfer systems for delivery of plasmid deoxyribonucleic acid to Lactobacillus acidophilus ADH: conjugation, electroporation, and transduction. J Dairy Sci 72:1408–1417
    [Google Scholar]
  21. Madsen P. L., Hammer K. 1998; Temporal transcription of the lactococcal temperate phage TP901-1 and DNA sequence of the early promoter region. Microbiology 144:2203–2215
    [Google Scholar]
  22. Martin A. C., Lopez R., Garcia P. 1996; Analysis of the complete nucleotide sequence and functional organization of the genome of Streptococcus pneumoniae bacteriophage Cp-1. J Virol 70:3678–3687
    [Google Scholar]
  23. Matern H. T., Klein J. R., Henrich B., Plapp R. 1994; Determination and comparison of Lactobacillus delbrueckii ssp. lactis DSM7290 promoter sequences. FEMS Microbiol Lett 122:121–128
    [Google Scholar]
  24. Neu T., Henrich B. 2003; New thermosensitive delivery vector and its use to enable nisin-controlled gene expression in Lactobacillus gasseri . Appl Environ Microbiol 69:1377–1382
    [Google Scholar]
  25. Nicholson A. W. 1999; Function, mechanism and regulation of bacterial ribonucleases. FEMS Microbiol Rev 23:371–390
    [Google Scholar]
  26. Pedrosa M. C., Golner B. B., Goldin B. R., Barakat S., Dallal G. E., Russell R. M. 1995; Survival of yogurt-containing organisms and Lactobacillus gasseri (ADH) and their effect on bacterial enzyme activity in the gastrointestinal tract of healthy and hypochlorhydric elderly subjects. Am J Clin Nutr 61:353–359
    [Google Scholar]
  27. Ponting C. P., Aravind L. 1997; PAS: a multifunctional domain family comes to light. Curr Biol 7:R674–R677
    [Google Scholar]
  28. Raya R. R., Kleeman E. G., Luchansky J. B., Klaenhammer T. R. 1989; Characterization of the temperate bacteriophage ϕ adh and plasmid transduction in Lactobacillus acidophilus ADH. Appl Environ Microbiol 55:2206–2213
    [Google Scholar]
  29. Raya R. R., Fremaux C., De Antoni G. L., Klaenhammer T. R. 1992; Site-specific integration of the temperate bacteriophage ϕ adh into the Lactobacillus gasseri chromosome and molecular characterization of the phage ( attP ) and bacterial ( attB ) attachment sites. J Bacteriol 174:5584–5592
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laborarory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Selden R. F. 1987; Analysis of RNA by Northern hybridization. In Current Protocols in Molecular Biology pp 4.9.1–4.9.8 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  32. Smith M. C., Burns R. N., Wilson S. E., Gregory M. A. 1999; The complete genome sequence of the Streptomyces temperate phage ϕ C31: evolutionary relationships to other viruses. Nucleic Acids Res 27:2145–2155
    [Google Scholar]
  33. Ventura M., Foley S., Bruttin A., Chennoufi S. C., Canchaya C., Brüssow H. 2002; Transcription mapping as a tool in phage genomics: the case of the temperate Streptococcus thermophilus phage Sfi21. Virology 296:62–76
    [Google Scholar]
  34. Wegmann U., Klein J. R., Drumm I., Kuipers O. P., Henrich B. 1999; Introduction of peptidase genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and controlled expression. Appl Environ Microbiol 65:4729–4733
    [Google Scholar]
  35. Wells J. M., Wilson P. W., Le Page R. W. 1993; Improved cloning vectors and transformation procedure for Lactococcus lactis . J Appl Bacteriol 74:629–636
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26150-0
Loading
/content/journal/micro/10.1099/mic.0.26150-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error