A computer investigation of chemically mediated detachment in bacterial biofilms Free

Abstract

A three-dimensional computer model was used to evaluate the effect of chemically mediated detachment on biofilm development in a negligible-shear environment. The model, BacLAB, combines conventional diffusion-reaction equations for chemicals with a cellular automata algorithm to simulate bacterial growth, movement and detachment. BacLAB simulates the life cycle of a bacterial biofilm from its initial colonization of a surface to the development of a mature biofilm with cell areal densities comparable to those in the laboratory. A base model founded on well established transport equations that are easily adaptable to investigate conjectures at the biological level has been created. In this study, the conjecture of a detachment mechanism involving a bacterially produced chemical detachment factor in which high local concentrations of this detachment factor cause the bacteria to detach from the biofilm was examined. The results show that the often observed ‘mushroom’-shaped structure can occur if detachment events create voids so that the remaining attached cells look like mushrooms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26134-0
2003-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491155.html?itemId=/content/journal/micro/10.1099/mic.0.26134-0&mimeType=html&fmt=ahah

References

  1. Allison D. G., Heys S. J. D., Willcock L., Holah J., Gilbert P. 1999; Cellular detachment and dispersal from bacterial biofilms: a role for quorum sensing?. In Biofilms: the Good, the Bad and the Ugly pp  279–286 Edited by Wimpenny J., Gilbert P., Walker J., Brading M., Bayston R. Cardiff, UK: Bioline;
    [Google Scholar]
  2. Barker G. C., Grimson M. J. 1993; A cellular automaton model of microbial growth. Binary 5:132–137
    [Google Scholar]
  3. Boyd A., Chakrabarty A. M. 1994; Role of alginate lyase in cell detachment of Pseudomonas aeruginosa . Appl Environ Microbiol 60:2355–2359
    [Google Scholar]
  4. Characklis W. G. 1989 Biofilms pp 55–89 p. 114 Edited by Characklis W. G., Marshall K. C. New York: Wiley;
    [Google Scholar]
  5. Colasanti R. L. 1992; Cellular automata models of microbial colonies. Binary 4:191–193
    [Google Scholar]
  6. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298
    [Google Scholar]
  7. Eberl H. J., Picioreanu C., Heijnen J. J., van Loosdrecht M. C. M. 2000; A three-dimensional numerical study on the correlation of spatial structure, hydrodynamic conditions, and mass transfer and conversion in biofilms. Chem Eng Sci 55:6209–6222
    [Google Scholar]
  8. Ermentrout G. B., Edelstein-Keshet L. 1993; Cellular automata approaches to biological modeling. J Theor Biol 160:97–133
    [Google Scholar]
  9. Evans M., Hastings N., Peacock B. 1993; Rectangular (uniform) continuous distribution. In Statistical Distributions pp  137–140 New York: Wiley;
    [Google Scholar]
  10. Hermanowicz S. W. 1998; Model of two-dimensional biofilm morphology. Water Sci Technol 37:219–222
    [Google Scholar]
  11. Hermanowicz S. W. 1999; Two-dimensional simulations of biofilm development: effects of external environmental conditions. Water Sci Technol 39:107–114
    [Google Scholar]
  12. Jackson G., Beyenal H., Rees W. M., Lewandowski Z. 2001; Growing reproducible biofilms with respect to structure and viable cell counts. J Microbiol Methods 37:1–10
    [Google Scholar]
  13. Kolter R., Losick R. 1998; One for all and all for one. Science 280:226–227
    [Google Scholar]
  14. Kreft J. U., Booth G., Wimpenny J. W. T. 1998; BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144:3275–3287
    [Google Scholar]
  15. Monod J. 1949; The growth of bacterial cultures. Annu Rev Microbiol 3:371–394
    [Google Scholar]
  16. Noguera D. R., Pizarro G., Stahl D. A., Rittmann B. E. 1999; Simulation of multispecies biofilm development in three dimensions. Water Sci Technol 39:123–130
    [Google Scholar]
  17. Picioreanu C., van Loosdrecht M. C. M., Heijnen J. J. 1998; A new combined differential-discrete cellular automaton approach for biofilm modeling: application for growth in gel beads. Biotechnol Bioeng 57:718–731
    [Google Scholar]
  18. Picioreanu C., van Loosdrecht M. C. M., Heijnen J. J. 1999; Discrete-differential modeling of biofilm structure. Water Sci Technol 39:115–122
    [Google Scholar]
  19. Potera C. 1999; Forging a link between biofilms and disease. Science 283:1837–1839
    [Google Scholar]
  20. Rittmann B. E., Manem J. A. 1992; Development and experimental evaluation of a steady-state, multispecies biofilm model. Biotechnol Bioeng 39:914–922
    [Google Scholar]
  21. Rittmann B. E., McCarty P. L. 1980; Model of steady-state-biofilm kinetics. Biotechnol Bioeng 22:2343–2357
    [Google Scholar]
  22. Sauer K., Camper A. K., Ehrlich G. D., Costerton J. W., Davies D. G. 2002; Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154
    [Google Scholar]
  23. Stewart P. S., Peyton B. M., Drury W. J., Murga R. 1994; Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 59:327–329
    [Google Scholar]
  24. Stoodley P., Wilson S., Hall-Stoodley L., Boyle J. D., Lappin-Scott H. M., Costerton J. W. 2001; Growth and detachment of cell clusters from mature mixed species biofilms. Appl Environ Microbiol 67:5608–5613
    [Google Scholar]
  25. Wanner O., Gujer W. 1986; Multispecies biofilm model. Biotechnol Bioeng 28:314–328
    [Google Scholar]
  26. Wanner O., Reichert P. 1996; Mathematical modeling of mixed-culture biofilms. Biotechnol Bioeng 49:172–184
    [Google Scholar]
  27. Watnick P., Kolter R. 2000; Biofilm, city of microbes. J Bacteriol 182:2672–2679
    [Google Scholar]
  28. Wimpenny J. W. T., Colasanti R. 1997; A unifying hypothesis for the structure of microbial biofilms based on cellular automaton models. FEMS Microb Ecol 22:1–16
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26134-0
Loading
/content/journal/micro/10.1099/mic.0.26134-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed