1887

Abstract

polymerization of the essential bacterial cell division protein FtsZ, in the presence of GTP, is rapid and transient due to its efficient binding and hydrolysis of GTP. In contrast, the polymeric FtsZ structure which drives cell division – the Z-ring – is present in cells for extended periods of time whilst undergoing constant turnover of FtsZ. It is demonstrated that dynamic polymerization of FtsZ is sensitive to the ratio of GTP to GDP concentration. Increase of GDP concentration in the presence of a constant GTP concentration reduces both the duration of FtsZ polymerization and the initial light-scattering maximum which occurs upon addition of GTP. It is also demonstrated that by use of a GTP-regeneration system, polymers of FtsZ can be maintained in a steady state for up to 85 min, while preserving their dynamic properties. The authors therefore present the use of a GTP-regeneration system for FtsZ polymerization as an assay more representative of the situation, where FtsZ polymers are subject to a constant, relatively high GTP to GDP ratio.

Keyword(s): Z-ring, FtsZ ring
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26126-0
2003-08-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492235.html?itemId=/content/journal/micro/10.1099/mic.0.26126-0&mimeType=html&fmt=ahah

References

  1. Addinall, S. G. & Lutkenhaus, J. ( 1996; ). FtsZ-spirals and -arcs determine the shape of the invaginating septa in some mutants of Escherichia coli. Mol Microbiol 22, 231–237.[CrossRef]
    [Google Scholar]
  2. Addinall, S. G., Bi, E. & Lutkenhaus, J. ( 1996; ). FtsZ ring formation in fts mutants. J Bacteriol 178, 3877–3884.
    [Google Scholar]
  3. Addinall, S. G., Cao, C. & Lutkenhaus, J. ( 1997; ). Temperature shift experiments with an ftsZ84(Ts) strain reveal rapid dynamics of FtsZ localization and indicate that the Z ring is required throughout septation and cannot reoccupy division sites once constriction has initiated. J Bacteriol 179, 4277–4284.
    [Google Scholar]
  4. Bachmann, B. J. ( 1972; ). Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36, 525–557.
    [Google Scholar]
  5. Barak, R., Abouhamad, W. N. & Eisenbach, M. ( 1998; ). Both acetate kinase and acetyl coenzyme A synthetase are involved in acetate-stimulated change in the direction of flagellar rotation in Escherichia coli. J Bacteriol 180, 985–988.
    [Google Scholar]
  6. Beech, P. L., Nheu, T., Schultz, T., Herbert, S., Lithgow, T., Gilson, P. R. & McFadden, G. I. ( 2000; ). Mitochondrial FtsZ in a chromophyte alga. Science 287, 1276–1279.[CrossRef]
    [Google Scholar]
  7. Bi, E. F. & Lutkenhaus, J. ( 1991; ). FtsZ ring structure associated with division in Escherichia coli. Nature 354, 161–164.[CrossRef]
    [Google Scholar]
  8. Bi, E. & Lutkenhaus, J. ( 1992; ). Isolation and characterization of ftsZ alleles that affect septal morphology. J Bacteriol 174, 5414–5423.
    [Google Scholar]
  9. Caplan, M. & Erickson, H. P. ( 2003; ). Apparent cooperative assembly of the bacterial cell-division protein FtsZ demonstrated by isothermal titration calorimetry. J Biol Chem 278, 13784–13788.[CrossRef]
    [Google Scholar]
  10. Dai, K. & Lutkenhaus, J. ( 1991; ). ftsZ is an essential cell division gene in Escherichia coli. J Bacteriol 173, 3500–3506.
    [Google Scholar]
  11. Dai, K., Mukherjee, A., Xu, Y. & Lutkenhaus, J. ( 1994; ). Mutations in ftsZ that confer resistance to SulA affect the interaction of FtsZ with GTP. J Bacteriol 176, 130–136.
    [Google Scholar]
  12. de Boer, P., Crossley, R. & Rothfield, L. ( 1992; ). The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359, 254–256.[CrossRef]
    [Google Scholar]
  13. Den Blaauwen, T., Buddelmeijer, N., Aarsman, M. E., Hameete, C. M. & Nanninga, N. ( 1999; ). Timing of FtsZ assembly in Escherichia coli. J Bacteriol 181, 5167–5175.
    [Google Scholar]
  14. Erickson, H. P., Taylor, D. W., Taylor, K. A. & Bramhill, D. ( 1996; ). Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc Natl Acad Sci U S A 93, 519–523.[CrossRef]
    [Google Scholar]
  15. Lowe, J. & Amos, L. A. ( 1998; ). Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206.[CrossRef]
    [Google Scholar]
  16. Lowe, J. & Amos, L. A. ( 1999; ). Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. EMBO J 18, 2364–2371.[CrossRef]
    [Google Scholar]
  17. Lowe, J. & Amos, L. A. ( 2000; ). Helical tubes of FtsZ from Methanococcus jannaschii. Biol Chem 381, 993–999.
    [Google Scholar]
  18. Lu, C. & Erickson, H. P. ( 1998; ). Purification and assembly of FtsZ. Methods Enzymol 298, 305–313.
    [Google Scholar]
  19. Lu, C., Reedy, M. & Erickson, H. P. ( 2000; ). Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J Bacteriol 182, 164–170.[CrossRef]
    [Google Scholar]
  20. Lutkenhaus, J. & Addinall, S. G. ( 1997; ). Bacterial cell division and the Z ring. Annu Rev Biochem 66, 93–116.[CrossRef]
    [Google Scholar]
  21. MacNeal, R. K., Webb, B. C. & Purich, D. L. ( 1977; ). Neurotubule assembly at substoichiometric nucleotide levels using a GTP regenerating system. Biochem Biophys Res Commun 74, 440–447.[CrossRef]
    [Google Scholar]
  22. Mingorance, J., Rueda, S., Gomez-Puertas, P., Valencia, A. & Vicente, M. ( 2001; ). Escherichia coli FtsZ polymers contain mostly GTP and have a high nucleotide turnover. Mol Microbiol 41, 83–91.[CrossRef]
    [Google Scholar]
  23. Mukherjee, A. & Lutkenhaus, J. ( 1994; ). Guanine nucleotide-dependent assembly of FtsZ into filaments. J Bacteriol 176, 2754–2758.
    [Google Scholar]
  24. Mukherjee, A. & Lutkenhaus, J. ( 1998a; ). Purification, assembly, and localization of FtsZ. Methods Enzymol 298, 296–305.
    [Google Scholar]
  25. Mukherjee, A. & Lutkenhaus, J. ( 1998b; ). Dynamic assembly of FtsZ regulated by GTP hydrolysis. EMBO J 17, 462–469.[CrossRef]
    [Google Scholar]
  26. Mukherjee, A. & Lutkenhaus, J. ( 1999; ). Analysis of FtsZ assembly by light scattering and determination of the role of divalent metal cations. J Bacteriol 181, 823–832.
    [Google Scholar]
  27. Mukherjee, A., Dai, K. & Lutkenhaus, J. ( 1993; ). Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. Proc Natl Acad Sci U S A 90, 1053–1057.[CrossRef]
    [Google Scholar]
  28. Mukherjee, A., Saez, C. & Lutkenhaus, J. ( 2001; ). Assembly of an FtsZ mutant deficient in GTPase activity has implications for FtsZ assembly and the role of the Z ring in cell division. J Bacteriol 183, 7190–7197.[CrossRef]
    [Google Scholar]
  29. Neuhard, J. & Nygaard, P. ( 1987; ). Purines and pyrimidines. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 445–473. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  30. Osteryoung, K. W. & McAndrew, R. S. ( 2001; ). The plastid division machine. Annu Rev Plant Physiol Plant Mol Biol 52, 315–333.[CrossRef]
    [Google Scholar]
  31. Pla, J., Sanchez, M., Palacios, P., Vicente, M. & Aldea, M. ( 1991; ). Preferential cytoplasmic location of FtsZ, a protein essential for Escherichia coli septation. Mol Microbiol 5, 1681–1686.[CrossRef]
    [Google Scholar]
  32. Pogliano, J., Pogliano, K., Weiss, D. S., Losick, R. & Beckwith, J. ( 1997; ). Inactivation of FtsI inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings at potential division sites. Proc Natl Acad Sci U S A 94, 559–564.[CrossRef]
    [Google Scholar]
  33. Purich, D. L., Terry, B. J., MacNeal, R. K. & Karr, T. L. ( 1982; ). Characterization of tubulin and microtubule-associated protein interactions with guanine nucleotides and their nonhydrolyzable analogs. Methods Enzymol 85, 416–433.
    [Google Scholar]
  34. RayChaudhuri, D. & Park, J. T. ( 1992; ). Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein. Nature 359, 251–254.[CrossRef]
    [Google Scholar]
  35. Rivas, G., Lopez, A., Mingorance, J., Ferrandiz, M. J., Zorrilla, S., Minton, A. P., Vicente, M. & Andreu, J. M. ( 2000; ). Magnesium-induced linear self-association of the FtsZ bacterial cell division protein monomer. The primary steps for FtsZ assembly. J Biol Chem 275, 11740–11749.[CrossRef]
    [Google Scholar]
  36. Rivas, G., Fernandez, J. A. & Minton, A. P. ( 2001; ). Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: indefinite linear self-association of bacterial cell division protein FtsZ. Proc Natl Acad Sci U S A 98, 3150–3155.[CrossRef]
    [Google Scholar]
  37. Romberg, L., Simon, M. & Erickson, H. P. ( 2001; ). Polymerization of FtsZ, a bacterial homolog of tubulin – is assembly cooperative? J Biol Chem 276, 11743–11753.[CrossRef]
    [Google Scholar]
  38. Scheffers, D. & Driessen, A. J. ( 2001; ). The polymerization mechanism of the bacterial cell division protein FtsZ. FEBS Lett 506, 6–10.[CrossRef]
    [Google Scholar]
  39. Scheffers, D. J. & Driessen, A. J. ( 2002; ). Immediate GTP hydrolysis upon FtsZ polymerization. Mol Microbiol 43, 1517–1521.[CrossRef]
    [Google Scholar]
  40. Scheffers, D. J., den Blaauwen, T. & Driessen, A. J. ( 2000; ). Non-hydrolysable GTP-gamma-S stabilizes the FtsZ polymer in a GDP-bound state. Mol Microbiol 35, 1211–1219.[CrossRef]
    [Google Scholar]
  41. Scheffers, D. J., de Wit, J. G., den Blaauwen, T. & Driessen, A. J. ( 2002; ). GTP hydrolysis of cell division protein FtsZ: evidence that the active site is formed by the association of monomers. Biochemistry 41, 521–529.[CrossRef]
    [Google Scholar]
  42. Sossong, T. M., Jr, Brigham-Burke, M. R., Hensley, P. & Pearce, K. H., Jr ( 1999; ). Self-activation of guanosine triphosphatase activity by oligomerization of the bacterial cell division protein FtsZ. Biochemistry 38, 14843–14850.[CrossRef]
    [Google Scholar]
  43. Stricker, J., Maddox, P., Salmon, E. D. & Erickson, H. P. ( 2002; ). Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci U S A 99, 3171–3175.[CrossRef]
    [Google Scholar]
  44. Sun, Q. & Margolin, W. ( 1998; ). FtsZ dynamics during the division cycle of live Escherichia coli cells. J Bacteriol 180, 2050–2056.
    [Google Scholar]
  45. Vitha, S., McAndrew, R. S. & Osteryoung, K. W. ( 2001; ). FtsZ ring formation at the chloroplast division site in plants. J Cell Biol 153, 111–120.[CrossRef]
    [Google Scholar]
  46. Wang, X. & Lutkenhaus, J. ( 1996; ). FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol Microbiol 21, 313–319.[CrossRef]
    [Google Scholar]
  47. White, E. L., Ross, L. J., Reynolds, R. C., Seitz, L. E., Moore, G. D. & Borhani, D. W. ( 2000; ). Slow polymerization of Mycobacterium tuberculosis FtsZ. J Bacteriol 182, 4028–4034.[CrossRef]
    [Google Scholar]
  48. Yu, X. C. & Margolin, W. ( 1997; ). Ca2+-mediated GTP-dependent dynamic assembly of bacterial cell division protein FtsZ into asters and polymer networks in vitro. EMBO J 16, 5455–5463.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26126-0
Loading
/content/journal/micro/10.1099/mic.0.26126-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error