1887

Abstract

The intracellular transport of iron and its incorporation into organelles are poorly understood processes in eukaryotes and virtually unknown in parasitic protists. The transport of iron is of particular interest in trichomonads, which possess hydrogenosomes instead of mitochondria. The metabolic functions of hydrogenosomes, which contain a specific set of FeS proteins, entirely depend on iron acquisition. In this work the incorporation of iron into the cattle parasite was monitored. Iron was efficiently taken up from Fe-nitrilotriacetic acid and accumulated in the cytosol (88·9 %) and hydrogenosomes (4·7 % of the total radioactivity). Using atomic absorption spectrophotometry, an unusually high steady-state iron concentration in hydrogenosomes was determined [54·4±1·1 nmol Fe (mg protein)]. The concentration of iron in the cytosol was 13·4±0·5 nmol Fe (mg protein). Qualitative analysis of incorporated iron was performed using native gradient PAGE. The majority of the Fe in the cytosol appeared as the labile-iron pool, which represents weakly bound iron associated with compounds of molecular mass ranging from 5000 to 30 000 Da. Ferritin was not observed in , nor in two other anaerobic protists, and . Analysis of hydrogenosomes showed at least nine iron-binding compounds, which were absent in metronidazole-resistant mutants. The major iron-binding compound was identified as [2Fe–2S] ferredoxin of the adrenodoxin type.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26122-0
2003-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491911.html?itemId=/content/journal/micro/10.1099/mic.0.26122-0&mimeType=html&fmt=ahah

References

  1. Andrews S. C., Smith J. M. A., Yewdall S. J., Guest J. R., Harrison P. M. 1991; Bacterioferritins and ferritins are distantly related in evolution – conservation of ferroxidase-center residues. FEBS Lett 293:164–168
    [Google Scholar]
  2. Bates G. W., Wernicke J. 1971; The kinetics and mechanism of iron(III) exchange between chelates and transferrin. J Biol Chem 246:3679–3685
    [Google Scholar]
  3. Bertini I., Luchinat C., Provenzani A., Rosato A., Vasos P. R. 2002; Browsing gene banks for Fe2S2 ferredoxins and structural modeling of 88 plant-type sequences: an analysis of fold and function. Prot Struct Funct Genet 46:110–127
    [Google Scholar]
  4. Bohnke R., Matzanke B. F. 1995; The mobile ferrous iron pool in Escherichia coli is bound to a phosphorylated sugar derivative. Biometals 8:223–230
    [Google Scholar]
  5. Bradley P. J., Lahti C. J., Plümper E., Johnson P. J. 1997; Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas : similarities with mitochondrial protein import. EMBO J 16:3484–3493
    [Google Scholar]
  6. Brown D. M., Upcroft J. A., Edwards M. R., Upcroft P. 1998; Anaerobic bacterial metabolism in the ancient eukaryote Giardia duodenalis . Int J Parasitol 28:149–164
    [Google Scholar]
  7. Crichton R. 1991; Intracellular iron storage – ferritin, haemosiderin and the low molecular weight iron pool. In Inorganic Biochemistry of Iron Metabolism pp  131–162 New York: Ellis Horwood;
    [Google Scholar]
  8. Diamond L. S. 1957; The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43:488–490
    [Google Scholar]
  9. Diamond L. S., Harlow W. D., Cunnick C. C. 1978; A new medium for the axenic cultivation of Entamoeba histolytica and other Entamoeba . Trans R Soc Trop Med Hyg 72:431–432
    [Google Scholar]
  10. Drmota T., Proost P., Van Ranst M., Weyda F., Kulda J., Tachezy J. 1996; Iron-ascorbate cleavable malic enzyme from hydrogenosomes of Trichomonas vaginalis : purification and characterization. Mol Biochem Parasitol 83:221–234
    [Google Scholar]
  11. Dyall S. D., Johnson P. J. 2000; Origins of hydrogenosomes and mitochondria: evolution and organelle biogenesis. Curr Opin Microbiol 3:404–411
    [Google Scholar]
  12. Ellis J. E., Williams R., Cole D., Cammack R., Lloyd D. 1993; Electron transport components of the parasitic protozoon Giardia lamblia . FEBS Lett 325:196–200
    [Google Scholar]
  13. Gorrell T. E. 1985; Effect of culture medium iron content on biochemical composition and metabolism of Trichomonas vaginalis . J Bacteriol 161:1228–1230
    [Google Scholar]
  14. Gorrell T. E., Yarlett N., Müller M. 1984; Isolation and characterization of Trichomonas vaginalis ferredoxin. Carlsberg Res Commun 49:259–268
    [Google Scholar]
  15. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  16. Jacobs A. 1977; Low molecular weight intracellular iron transport compounds. Blood 50:433–439
    [Google Scholar]
  17. Johnson P. J., d'Oliveira C. E., Gorrell T. E., Müller M. 1990; Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist Trichomonas vaginalis . Proc Natl Acad Sci U S A 87:6097–6101
    [Google Scholar]
  18. Katinka M. D., Duprat S., Cornillot E. 14 other authors 2001; Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi . Nature 414:450–453
    [Google Scholar]
  19. Keister D. B. 1983; Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77:487–488
    [Google Scholar]
  20. Kulda J. 1999; Trichomonads, hydrogenosomes and drug resistance. Int J Parasitol 29:199–212
    [Google Scholar]
  21. Kulda J., Poislová M., Suchan P., Tachezy J. 1998; Enhancing effect of iron on experimental infection of mice by Tritrichomonas foetus . Parasitology 85:692–699
    [Google Scholar]
  22. Land K. M., Clemens D. L., Johnson P. J. 2001; Loss of multiple hydrogenosomal proteins associated with organelle metabolism and high-level drug resistance in trichomonads. Exp Parasitol 97:102–110
    [Google Scholar]
  23. Land K. M., Delgadillo M. G., Johnson P. J. 2002; In vivo expression of ferredoxin in a drug resistant trichomonad increases metronidazole susceptibility. Mol Biochem Parasitol 121:153–157
    [Google Scholar]
  24. Lange H., Kaut A., Kispal G., Lill R. 2000; A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. Proc Natl Acad Sci U S A 97:1050–1055
    [Google Scholar]
  25. Levi S., Corsi B., Bosisio M., Invernizzi R., Volz A., Sanford D., Arosio P., Drysdale J. 2001; A human mitochondrial ferritin encoded by an intronless gene. J Biol Chem 276:24437–24440
    [Google Scholar]
  26. Li J., Kogan M., Knight S. A., Pain D., Dancis A. 1999; Yeast mitochondrial protein, Nfs1p, coordinately regulates iron-sulfur cluster proteins, cellular iron uptake, and iron distribution. J Biol Chem 274:33025–33034
    [Google Scholar]
  27. Lill R., Kispal G. 2000; Maturation of cellular Fe–S proteins: an essential function of mitochondria. Trends Biochem Sci 25:352–356
    [Google Scholar]
  28. Marczak R., Gorrell T. E., Müller M. 1983; Hydrogenosomal ferredoxin of the anaerobic protozoon, Tritrichomonas foetus . J Biol Chem 258:12427–12433
    [Google Scholar]
  29. Martin W., Müller M. 1998; The hydrogen hypothesis for the first eukaryote. Nature 392:37–41
    [Google Scholar]
  30. Mazurier J., Spik G. 1980; Comparative study of the iron-binding properties of human transferrins. I. Complete and sequential iron saturation and desaturation of the lactotransferrin. Biochim Biophys Acta 629:399–408
    [Google Scholar]
  31. Müller M. 1973; Biochemical cytology of trichomonad flagellates. I. Subcellular localization of hydrolases, dehydrogenases, and catalase in Tritrichomonas foetus . J Cell Biol 57:453–474
    [Google Scholar]
  32. Müller M. 1988; Energy metabolism of protozoa without mitochondria. Annu Rev Microbiol 42:465–488
    [Google Scholar]
  33. Müller M. 1993; The hydrogenosome. J Gen Microbiol 139:2879–2889
    [Google Scholar]
  34. Nixon J. E. J., Wang A., Morrison H. G., McArthur A. G., Sogin M. L., Loftus B. J., Samuelson J. 2002; A spliceosomal intron in Giardia lamblia . Proc Natl Acad Sci U S A 99:3701–3705
    [Google Scholar]
  35. Ollagnier-de-Choudens S., Mattioli T., Tagahashi Y., Fontecave M. 2001; Iron–sulfur cluster assembly – Characterization of IscA and evidence for a specific and functional complex with ferredoxin. J Biol Chem 276:22604–22607
    [Google Scholar]
  36. Payne M. J., Chapman A., Cammack R. 1993; Evidence for an [Fe]-type hydrogenase in the parasitic protozoan Trichomonas vaginalis . FEBS Lett 317:101–104
    [Google Scholar]
  37. Peterson K. M., Alderete J. F. 1984; Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors. J Exp Med 160:398–410
    [Google Scholar]
  38. Petrák J., Vyoral D. 2001; Detection of iron-containing proteins contributing to the cellular labile iron pool by a native electrophoresis metal blotting technique. J Inorg Biochem 86:669–675
    [Google Scholar]
  39. Quon D. V., d'Oliveira C. E., Johnson P. J. 1992; Reduced transcription of the ferredoxin gene in metronidazole-resistant Trichomonas vaginalis . Proc Natl Acad Sci U S A 89:4402–4406
    [Google Scholar]
  40. Rasoloson D., Tomková E., Cammack R., Kulda J., Tachezy J. 2001; Metronidazole-resistant strains of Trichomonas vaginalis display increased susceptibility to oxygen. Parasitology 123:45–56
    [Google Scholar]
  41. Rasoloson D., Vaňáčová S., Tomková E., Razga J., Hrdý I., Tachezy J., Kulda J. 2002; Mechanisms of in vitro development of resistance to metronidazole in Trichomonas vaginalis . Microbiology 148:2467–2477
    [Google Scholar]
  42. Richardson D. R., Ponka P., Vyoral D. 1996; Distribution of iron in reticulocytes after inhibition of heme synthesis with succinylacetone: examination of the intermediates involved in iron metabolism. Blood 87:3477–3488
    [Google Scholar]
  43. Rotte C., Henze K., Müller M., Martin W. 2000; Origins of hydrogenosomes and mitochondria – commentary. Curr Opin Microbiol 3:481–486
    [Google Scholar]
  44. Tachezy J., Kulda J., Bahníková I., Suchan P., Rázga J., Schrével J. 1996; Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin. Exp Parasitol 83:216–228
    [Google Scholar]
  45. Tachezy J., Suchan P., Schrével J., Kulda J. 1998; The host–protein independent iron uptake by Tritrichomonas foetus . Exp Parasitol 90:155–163
    [Google Scholar]
  46. Tachezy J., Sánchez L. B., Müller M. 2001; Mitochondrial type iron–sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis , as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928
    [Google Scholar]
  47. Takahashi Y., Nakamura M. 1999; Functional assignment of the ORF2 - iscS - iscU - iscA - hscB - hscA - fdx - ORF3 gene cluster in the assembly of Fe–S clusters in Escherichia coli . J Biochem 126:917–926
    [Google Scholar]
  48. Tangeras A. 1985; Mitochondrial iron not bound in heme and iron-sulfur centers and its availability for heme-synthesis in vitro . Biochim Biophys Acta 843:199–207
    [Google Scholar]
  49. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 2000; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
    [Google Scholar]
  50. Vaňáčová S., Rasoloson D., Razga J., Hrdý I., Kulda J., Tachezy J. 2001; Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology 147:53–62
    [Google Scholar]
  51. Vyoral D., Petrák J. 1998a; Detection and quantitation of Fe-59-labeled proteins using storage phosphorimaging. Anal Biochem 260:103–106
    [Google Scholar]
  52. Vyoral D., Petrák J. 1998b; Iron transport in K562 cells: a kinetic study using native gel electrophoresis and Fe-59 autoradiography. Biochim Biophys Acta 1403179–188
    [Google Scholar]
  53. Vyoral D., Hradílek A., Neuwirt J. 1992; Transferrin and iron distribution in subcellular fractions of K562 cells in the early stages of transferrin endocytosis. Biochim Biophys Acta 1137148–154
    [Google Scholar]
  54. Vyoral D., Petrák J., Hradílek A. 1998; Separation of cellular iron containing compounds by electrophoresis. Biol Trace Elem Res 61:263–275
    [Google Scholar]
  55. Weaver J., Pollack S. 1989; Low- M r iron isolated from guinea pig reticulocytes as AMP-Fe and ATP-Fe complexes. Biochem J 261:787–792
    [Google Scholar]
  56. Weinbach E. C., Takeuchi T., Claggett C. E., Inohue F., Kon H., Diamond S. D. 1980; Role of iron–sulfur proteins in the electron transport system of Entamoeba histolytica . Arch Investig Med 11:75–81
    [Google Scholar]
  57. Zheng L., White R. H., Cash V. L., Dean D. R. 1994; Mechanism for the desulfurization of l-cysteine catalyzed by the nifS gene product. Biochemistry 19:4714–4720
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26122-0
Loading
/content/journal/micro/10.1099/mic.0.26122-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error