1887

Abstract

Ruminal bacteria of the genus play a crucial role in peptide breakdown in the rumen, a component of protein catabolism that leads to the inefficient use of dietary protein by ruminant animals. This is the first report of the cloning of a peptidase gene from a ruminal bacterium. Part of the dipeptidyl peptidase type IV (DPP-IV) gene from M384 was cloned using degenerate primers designed from conserved regions found within other known DPP-IV sequences. Flanking regions were determined by genomic walking. The DPP-IV gene was expressed in . The cloned enzyme required a free N terminus and catalysed the removal of X-Pro dipeptide from proline-containing oligopeptides, where proline was the second residue from the N terminus. It was inhibited by serine protease inhibitors and the substrate analogue for mammalian DPP-IV, diprotin A. The properties of the cloned enzyme were similar to those of the native form in and, in general, DPP-IVs from other organisms. The enzyme contained a conserved motif which is associated with the S9 class of prolyl oligopeptidases. The DPP-IV gene appeared not to be part of a contiguous operon. Regions with similarity to other putative promoters of spp. were also identified. Construction of a phylogenetic tree demonstrated that the DPP-IV of clusters with other DPP-IVs found in bacteria of the (CFB) phylum, which are more closely related to eukaryotic DPP-IVs than the DPP-IV-like enzyme (PepX) of the lactic acid bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26119-0
2003-08-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/8/mic1492227.html?itemId=/content/journal/micro/10.1099/mic.0.26119-0&mimeType=html&fmt=ahah

References

  1. Avguštin G., Wright F., Flint H. J.. 1994; Genetic diversity and phylogenetic relationships among strains of Prevotella ( Bacteroides ) ruminicola from the rumen. Int J Syst Bacteriol44:246–255
    [Google Scholar]
  2. Avguštin G., Wallace R. J., Flint H. J.. 1997; Phenotypic diversity among ruminal isolates of Prevotella ruminicola : proposal of Prevotella brevis sp.nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and redefinition of Prevotella ruminicola . Int J Syst Bacteriol47:284–288
    [Google Scholar]
  3. Bayley D. P., Smith C. J.. 1998; The unique promoters of Bacteroides fragilis . In Abstracts of the 98th General Meeting of the American Society for Microbiology 1998 , abstract H-101 p293 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Benyon R. J., Bond J. S.. 1989; Proteolytic Enzymes Oxford: IRL Press;
  5. Bladen H. A., Bryant M. P., Doetsch R. N.. 1961; A study of bacterial species from the rumen which produce ammonia from protein hydrolyzate. Appl Microbiol9:175–180
    [Google Scholar]
  6. Chich J.-F.. 1998; X-Pro dipeptidyl peptidase. In The Handbook of Proteolytic Enzymes pp403–405 Edited by Barrett A. J., Rawlings N. D., Woessner J. F.. London: Academic Press;
  7. David F., Bernard A.-M., Pierres M., Marguet D.. 1993; Identification of serine 624, aspartic acid 702, and histidine 734 as the catalytic triad residues of mouse dipeptidyl-peptidase IV (CD26). A member of a novel family of nonclassical serine hydrolases. J Biol Chem268:17247–17252
    [Google Scholar]
  8. Depardon N., Debroas D., Blanchart G.. 1996; Breakdown of peptides from a casein hydrolysate by rumen bacteria. Simultaneous study of enzyme activities and physicochemical parameters. Reprod Nutr Dev36:457–466
    [Google Scholar]
  9. Felsenstein J.. 1989; phylip – Phylogeny inference package (version 3.2). Cladistics5:164–166
    [Google Scholar]
  10. Gonzales T., Robert-Baudouy J.. 1996; Bacterial aminopeptidases: properties and functions. FEMS Microbiol Rev18:319–344
    [Google Scholar]
  11. Hawley D. K., McClure W. R.. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res11:2237–2255
    [Google Scholar]
  12. Herbert D., Phipps P. J., Strange R. E.. 1971; Chemical analysis of microbial cells. Methods Microbiol5B:209–304
    [Google Scholar]
  13. Hobson P. N.. 1969; Rumen bacteria. Methods Microbiol5B:133–145
    [Google Scholar]
  14. Jackson C. A., Hoffmann B., Slakeski N., Cleal S., Hendtlass A. J., Reynolds E. C.. 2000; A consensus Porphyromonas gingivalis promoter sequence. FEMS Microbiol Lett186:133–138
    [Google Scholar]
  15. Kiyama M., Hayakawa M., Shiroza T., Nakamura S., Takeuchi A., Masamoto Y., Abiko Y.. 1998; Sequence analysis of the Porphyromonas gingivalis dipeptidyl peptidase IV gene. Biochim Biophys Acta1396:39–46
    [Google Scholar]
  16. Kyte J., Doolittle R. F.. 1982; A simple method for displaying the hydropathic character of a protein. J Mol Biol157:105–132
    [Google Scholar]
  17. Lazdunski A. M.. 1989; Peptidases and proteases of Escherichia coli and Salmonella typhimurium . FEMS Microbiol Rev5:265–276
    [Google Scholar]
  18. Leng R. A., Nolan J. V.. 1984; Nitrogen metabolism in the rumen. J Dairy Sci70:1072–1089
    [Google Scholar]
  19. Lloyd R. J., Pritchard G. G.. 1991; Characterization of X-prolyl dipeptidyl peptidase from Lactococcus lactis subsp. lactis . J Gen Microbiol137:49–55
    [Google Scholar]
  20. Madeira H. M., Peng L., Morrison M.. 1997; Biochemical and mutational analysis of a gingipain-like peptidase activity from Prevotella ruminicola B14 and its role in ammonia production by ruminal bacteria. Appl Environ Microbiol63:670–675
    [Google Scholar]
  21. McDonald J. K., Barrett A. J.. 1986; Mammalian Proteases: a Glossary and Bibliography , vol. 2, Exopeptidases London: Academic Press;
    [Google Scholar]
  22. McKain N., Wallace R. J., Watt N. D.. 1992; Selective isolation of bacteria with dipeptidyl peptidase type I activity from the sheep rumen. FEMS Microbiol Lett95:169–174
    [Google Scholar]
  23. Mierau I., Kunji E. R., Leenhouts K. J., Hellendoorn M. A., Haandrikman A. J., Poolman B., Konings W. N., Venema G., Kok J.. 1996; Multiple-peptidase mutants of Lactococcus lactis are severely impaired in their ability to grow in milk. J Bacteriol178:2794–2803
    [Google Scholar]
  24. Misumi Y., Ikehara Y.. 1998; Dipeptidyl peptidase IV. In The Handbook of Proteolytic Enzymes pp378–382 Edited by Barrett A. J., Rawlings N. D., Woessner J. F.. London: Academic Press;
  25. Moore S., Stein W. H.. 1954; A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J Biol Chem211:907–913
    [Google Scholar]
  26. Nielsen H., Engelbrecht J., Brunak S., von Heijne G.. 1997; Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng10:1–6
    [Google Scholar]
  27. Page R. D. M.. 1996; treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358
    [Google Scholar]
  28. Pittman K. A., Bryant M. P.. 1964; Peptides and other nitrogen sources for the growth of Bacteroides ruminicola . J Bacteriol88:401–410
    [Google Scholar]
  29. Ramsak A., Peterka M., Tajimab K., Martin J. C., Wood J., Johnstone M. E., Aminov R. I., Flint H. J., Avguštin G.. 2000; Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiol Ecol33:69–79
    [Google Scholar]
  30. Rawlings N. D.. 1998; Introduction: clan SC containing peptidases with the α / β hydrolase fold. In The Handbook of Proteolytic Enzymes pp369–372 Edited by Barrett A. J., Rawlings N. D., Woessner J. F. London: Academic Press;
  31. Rawlings N. D., Polgár L., Barrett A. J.. 1991; A new family of serine-type peptidases related to prolyl oligopeptidase. Biochem J279:907–908
    [Google Scholar]
  32. Russell J. B.. 1983; Fermentation of peptides by Bacteroides ruminicola B14. Appl Environ Microbiol45:1566–1574
    [Google Scholar]
  33. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  34. Van Gylswyk N. O.. 1990; Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets. FEMS Microbiol Ecol73:243–254
    [Google Scholar]
  35. Walker N. D.. 2002; Characterisation of peptide transport and hydrolysis by the ruminal bacterium Prevotella albensis PhD thesis University of Aberdeen, UK;
  36. Wallace R. J., Brammall M. L.. 1985; The role of different species of bacteria in the hydrolysis of protein in the rumen. J Gen Microbiol131:821–832
    [Google Scholar]
  37. Wallace R. J., McKain N.. 1989; Analysis of peptide metabolism by rumen microorganisms. Appl Environ Microbiol55:2372–2376
    [Google Scholar]
  38. Wallace R. J., McKain N.. 1991; A survey of peptidase activity in rumen bacteria. J Gen Microbiol137:2259–2264
    [Google Scholar]
  39. Wallace R. J., McKain N., Broderick G. A., Rode L. M., Walker N. D., Newbold C. J., Kopecny J.. 1997; Peptidases of the rumen bacterium, Prevotella ruminicola . Anaerobe3:35–42
    [Google Scholar]
  40. Wood J., Scott K. P., Avguštin G., Newbold C. J., Flint H. J.. 1998; Estimation of the relative abundance of different Bacteroides and Prevotella ribotypes in gut samples by restriction enzyme profiling of PCR-amplified 16S rRNA gene sequences. Appl Environ Microbiol64:3683–3689
    [Google Scholar]
  41. Yen C., Green L., Miller C. G.. 1980; Peptide accumulation during growth of peptidase deficient mutants. J Mol Biol143:35–48
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26119-0
Loading
/content/journal/micro/10.1099/mic.0.26119-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error