1887

Abstract

The 23S rRNA-targeted probes GAM42a and BET42a provided equivocal results with the uncultured gammaproteobacterium ‘ Competibacter phosphatis' where some cells bound GAM42a and other cells bound BET42a in fluorescence hybridization (FISH) experiments. Probes GAM42a and BET42a span positions 1027–1043 in the 23S rRNA and differ from each other by one nucleotide at position 1033. Clone libraries were prepared from PCR products spanning the 16S rRNA genes, intergenic spacer region and 23S rRNA genes from two mixed cultures enriched in ‘ C. phosphatis’. With individual clone inserts, the 16S rDNA portion was used to confirm the source organism as ‘ C. phosphatis' and the 23S rDNA portion was used to determine the sequence of the GAM42a/BET42a probe target region. Of the 19 clones sequenced, 8 had the GAM42a probe target (T at position 1033) and 11 had G at position 1033, the only mismatch with GAM42a. However, none of the clones had the BET42a probe target (A at 1033). Non-canonical base-pairing between the 23S rRNA of ‘ C. phosphatis' with G at position 1033 and GAM42a (G–A) or BET42a (G–T) is likely to explain the probing anomalies. A probe (GAM42_C1033) was optimized for use in FISH, targeting cells with G at position 1033, and was found to highlight not only some ‘ C. phosphatis' cells, but also other bacteria. This demonstrates that there are bacteria in addition to ‘ C. phosphatis' with the GAM42_C1033 probe target and not the BET42a or GAM42a probe target.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26112-0
2003-05-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491239.html?itemId=/content/journal/micro/10.1099/mic.0.26112-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Amann R. I., Krumholz L., Stahl D. A.. 1990; Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol172:762–770
    [Google Scholar]
  3. Amann R. I., Ludwig W., Schleifer K.-H.. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev59:143–169
    [Google Scholar]
  4. Amann R., Fuchs B. M., Behrens S.. 2001; The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol12:231–236
    [Google Scholar]
  5. Björnsson L, Hugenholtz P., Tyson G. W., Blackall L. L.. 2002; Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology148:2309–2318
    [Google Scholar]
  6. Bond P. L., Hugenholtz P., Keller J., Blackall L. L.. 1995; Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl Environ Microbiol61:1910–1916
    [Google Scholar]
  7. Bond P. L., Erhart R., Wagner M., Keller J., Blackall L. L.. 1999a; Identification of some of the major groups of bacteria in efficient and nonefficient biological phosphorus removal activated sludge systems. Appl Environ Microbiol65:4077–4084
    [Google Scholar]
  8. Bond P. L., Keller J., Blackall L. L.. 1999b; Bio-P and non-bio-P bacteria identification by a novel microbial approach. Water Sci Technol39:13–20
    [Google Scholar]
  9. Brosius J., Dull T. L., Steeter D. D., Noller H. F.. 1981; Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli . J Mol Biol148:107–127
    [Google Scholar]
  10. Crocetti G. R., Hugenholtz P., Bond P. L., Schuler A., Keller J., Jenkins D., Blackall L. L.. 2000; Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl Environ Microbiol66:1175–1182
    [Google Scholar]
  11. Crocetti G. R., Banfield J. F., Keller J., Bond P. L., Blackall L. L.. 2002; Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology148:3353–3364
    [Google Scholar]
  12. Dabert P., Sialve B., Delgenès J.-P., Moletta R., Godon J.-J.. 2001; Characterisation of the microbial 16S rDNA diversity of an aerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration. Appl Microbiol Biotechnol55:500–509
    [Google Scholar]
  13. Daims H., Brühl A., Amann R., Schleifer K.-H., Wagner M.. 1999; The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol22:434–444
    [Google Scholar]
  14. DeLong E. F., Wickham G. S., Pace N. R.. 1989; Phylogenetic stains: ribosomal RNA based probes for the identification of single cells. Science243:1360–1363
    [Google Scholar]
  15. Hugenholtz P., Tyson G. W., Webb R. I., Wagner A. M., Blackall L. L.. 2001; Investigation of candidate division TM7, a recently recognized major lineage of the Domain Bacteria with no known pure-culture representatives. Appl Environ Microbiol67:411–419
    [Google Scholar]
  16. Juretschko S., Timmermann G., Schmid M., Schleifer K.-H., Pommerening-Röser A., Koops H.-P., Wagner M.. 1998; Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrococcus mobilis and Nitrospira -like bacteria as dominant populations. Appl Environ Microbiol64:3042–3051
    [Google Scholar]
  17. Kong Y., Ong S. L., Ng W. J., Liu W.-T.. 2002; Diversity and distribution of a deeply branched novel proteobacterial group found in anaerobic–aerobic activated sludge processes. Environ Microbiol4:753–757
    [Google Scholar]
  18. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175 Edited by Stackebrandt E., Goodfellow M.. London: Wiley;
    [Google Scholar]
  19. Lathe R.. 1990; Oligonucleotide probes for in situ hybridisation. In In situ Hybridisation – Principles and Practice pp 71–80 Edited by Polak J. M., McGee J. O.. Oxford: Oxford University Press;
    [Google Scholar]
  20. Liu W.-T., Linning K. D., Nakamura K., Mino T., Matsuo T., Forney L. J.. 2000; Microbial community changes in biological phosphate-removal systems on altering sludge phosphorus content. Microbiology146:1099–1107
    [Google Scholar]
  21. Liu W.-T., Nielsen A. T., Wu J.-H., Tsai C.-S., Matsuo T., Molin S.. 2001; In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ Microbiol3:110–122
    [Google Scholar]
  22. Loy A., Daims H., Wagner M.. 2002; Activated sludge: molecular techniques for determining community composition. In The Encyclopedia of Environmental Microbiology pp 26–43 Edited by Bitton G.. New York: Wiley;
    [Google Scholar]
  23. Ludwig W., Klenk H.-P.. 2001; Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In Bergey's Manual of Systematic Bacteriology pp 49–65 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  24. Ludwig W., Rosselló-Mora R., Aznar R.. 14 other authors 1995; Comparative analysis of 23S rRNA from Proteobacteria . Syst Appl Microbiol18:164–188
    [Google Scholar]
  25. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H.. 1992; Phylogenetic oligonucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol15:593–600
    [Google Scholar]
  26. Nielsen A. T., Liu W.-T., Filipe C., Grady L., Molin S., Stahl D. A.. 1999; Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol65:1251–1258
    [Google Scholar]
  27. Rosselló-Mora R. A., Wagner M., Amann R., Schleifer K.-H.. 1995; The abundance of Zoogloea ramigera in sewage treatment plants. Appl Environ Microbiol61:702–707
    [Google Scholar]
  28. Schmid M., Twachtmann U., Klein M., Strous M., Juretschko S., Jetten M. S. M., Metzger J. W., Schleifer K.-H., Wagner M.. 2000; Molecular evidence for genus-level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol23:93–106
    [Google Scholar]
  29. Schmid M., Schmitz-Esser S., Jetten M. S. M., Wagner M.. 2001; 16S–23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium-oxidizing bacteria: implications for phylogeny and in situ detection. Environ Microbiol3:450–459
    [Google Scholar]
  30. Wagner M., Amann R., Lemmer H., Schleifer K.-H.. 1993; Probing activated sludge with oligonucleotides specific for proteobacteria: Inadequacy of culture-dependent methods for describing microbial community structure. Appl Environ Microbiol59:1520–1525
    [Google Scholar]
  31. Wagner M., Abmus B., Hartmann A., Hutzler P., Amann R.. 1994a; In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal scanning laser microscopy. J Microsc176:181–187
    [Google Scholar]
  32. Wagner M., Erhart R., Manz W., Amann R., Lemmer H., Wedi D., Schleiffer K.-H.. 1994b; Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl Environ Microbiol60:792–800
    [Google Scholar]
  33. Yeates C., Gillings M. R.. 1998; Rapid purification of DNA from soil for molecular biodiversity analysis. Lett Appl Microbiol27:49–53
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26112-0
Loading
/content/journal/micro/10.1099/mic.0.26112-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error