1887

Abstract

In the yeast , response to an increase in external osmolarity is mediated by the HOG (high osmolarity glycerol) MAP kinase pathway. HOG pathway mutant strains display osmosensitive phenotypes. Recently evidence has been obtained that the osmosensitivity of HOG pathway mutants is reduced during growth at elevated temperature (37 °C). A notable exception is the mutant, which displays hypersensitivity to osmotic stress at 37 °C. This paper reports that overexpression of or (encoding the glycerol transport facilitator and glycerol-3-phosphate dehydrogenase, respectively, and both affecting intracellular glycerol levels) reduces the hypersensitivity to osmotic stress of at 37 °C. Although in this particular HOG pathway mutant a correlation between suppression of the phenotype and glycerol content could be demonstrated, the absolute level of intracellular glycerol per se does not determine whether a strain is osmosensitive or not. Rather, evidence was obtained that the glycerol level may have an indirect effect, viz. by influencing signalling through the PKC (protein kinase C) MAP kinase pathway, which plays an important role in maintenance of cellular integrity. In order to validate the data obtained with a HOG pathway mutant strain for wild-type yeast cells, MAP kinase signalling under different growth conditions was examined in wild-type strains. PKC pathway signalling, which is manifest at elevated growth temperature by phosphorylation of MAP kinase Mpk1p, is rapidly lost when cells are shifted to high external osmolarity conditions. Expression of or overexpression of in wild-type cells resulted in restoration of PKC signalling. Both PKC and HOG signalling, cell wall phenotypes and high osmotic stress responses in wild-type cells were found to be influenced by the growth temperature. The data taken together indicate the intricate interdependence of growth temperature, intracellular glycerol, cell wall structure and MAP kinase signalling in the hyperosmotic stress response of yeast.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26110-0
2003-05-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491193.html?itemId=/content/journal/micro/10.1099/mic.0.26110-0&mimeType=html&fmt=ahah

References

  1. Albertyn J., Hohmann S., Thevelein J. M., Prior B. A. 1994; GPD1 , which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae , and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144
    [Google Scholar]
  2. Alexander M. R., Tyers M., Perret M., Craig B. M., Fang K. S., Gustin M. C. 2001; Regulation of cell cycle progression by Swe1p and Hog1p following hypertonic stress. Mol Biol Cell 12:53–62
    [Google Scholar]
  3. Alonso-Monge R., Navarro-Garcia F., Molero G., Diez-Orejas R., Gustin M., Pla J., Sanchez M., Nombela C. 1999; Role of the mitogen-activated protein kinase hog1p in morphogenesis and virulence of Candida albicans . J Bacteriol 181:3058–3068
    [Google Scholar]
  4. Alonso-Monge R., Real E., Wojda I., Bebelman J. P., Mager W. H., Siderius M. 2001; Hyperosmotic stress response and regulation of cell wall integrity in Saccharomyces cerevisiae share common functional aspects. Mol Microbiol 41:717–730
    [Google Scholar]
  5. Belli G., Gari E., Aldea M., Herrero E. 2001; Osmotic stress causes a G(1) cell cycle delay and downregulation of Cln3/Cdc28 activity in Saccharomyces cerevisiae . Mol Microbiol 39:1022–1035
    [Google Scholar]
  6. Bilsland-Marchesan E., Arino J., Saito H., Sunnerhagen P., Posas F. 2000; Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Mol Cell Biol 20:3887–3895
    [Google Scholar]
  7. Brewster J. L., De Valoir T., Dwyer N. D., Winter E., Gustin M. C. 1993; An osmosensing signal transduction pathway in yeast. Science 259:1760–1763
    [Google Scholar]
  8. Chowdhury S., Smith K. W., Gustin M. C. 1992; Osmotic stress and the yeast cytoskeleton: phenotype-specific suppression of an actin mutation. J Cell Biol 118:561–571
    [Google Scholar]
  9. Cullen P. J., Schultz J., Horecka J., Stevenson B. J., Jigami Y., Sprague G. F. 2000; Defects in protein glycosylation cause SHO1 -dependent activation of a STE12 signaling pathway in yeast. Genetics 155:1005–1018
    [Google Scholar]
  10. Davenport K. R., Sohaskey M., Kamada Y., Levin D. E., Gustin M. C. 1995; A second osmosensing signal transduction pathway in yeast. Proc Natl Acad Sci U S A 270:30157–30161
    [Google Scholar]
  11. de Nobel H., Ruiz C., Martin H., Morris W., Brul S., Molina M., Klis F. M. 2000; Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2–lacZ expression, glucanase resistance and thermotolerance. Microbiology 146:2121–2132
    [Google Scholar]
  12. Ferrigno P., Posas F., Koepp D., Saito H., Silver P. A. 1998; Regulated nucleo/cytoplasmic exchange of Hog1 MAPK requires the importin beta homologs Nmd5 and Xpo1. EMBO J 17:5606–5614
    [Google Scholar]
  13. Garcia-Rodriguez L. J., Duran A., Roncero C. 2000; Calcofluor antifungal action depends on chitin and a functional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of the Saccharomyces cerevisiae HOG pathway under noninducing conditions. J Bacteriol 182:2428–2437
    [Google Scholar]
  14. Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D., Brown P. O. 2000; Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257
    [Google Scholar]
  15. Gray J. V., Ogas J. P., Kamada Y., Stone M., Levin D. E., Herskowitz I. 1997; A role for the PKC1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J 16:4924–4937
    [Google Scholar]
  16. Güldener U., Heck S., Fiedler T., Beinhauer J., Hegemann J. H. 1996; A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24:2519–2524
    [Google Scholar]
  17. Gustin M. C., Albertyn J., Alexander M., Davenport K. 1998; MAP kinase pathways in the yeast Saccharomyces cerevisiae . Microbiol Mol Biol Rev 62:1264–1300
    [Google Scholar]
  18. Hohmann S. 1997; Shaping up: the responses of yeast to osmotic stress. In Yeast Stress Responses pp  101–146 Edited by Hohmann S., Mager W. H. Lexington: R. G. Landes;
    [Google Scholar]
  19. Hohmann S. 2002; Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372
    [Google Scholar]
  20. Jacoby T., Flanagan H., Faykin A., Seto A. G., Mattison C., Ota I. 1997; Two protein-tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen-activated protein kinase, Hog1. J Biol Chem 272:17749–17755
    [Google Scholar]
  21. Kapteyn J. C., ter Riet B., Vink E., Blad S., De Nobel H., Van Den Ende H., Klis F. M. 2001; Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol 39:469–479
    [Google Scholar]
  22. Ketela T., Green R., Bussey H. 1999; Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway. J Bacteriol 181:3330–3340
    [Google Scholar]
  23. Klebe R. J., Harriss J. V., Sharp Z. D., Douglas M. G. 1983; A general method for polyethylene-glycol-induced genetic transformation of bacteria and yeast. Gene 25:333–341
    [Google Scholar]
  24. Lai M. H., Silverman S. J., Gaughran J. P., Kirsch D. R. 1997; Multiple copies of PBS2 , MHP1 or LRE1 produce glucanase resistance and other cell wall effects in Saccharomyces cerevisiae . Yeast 13:199–213
    [Google Scholar]
  25. Lee B. N., Elion E. A. 1999; The MAPKKK Ste11 regulates vegetative growth through a kinase cascade of shared signaling components. Proc Natl Acad Sci U S A 96:12679–12684
    [Google Scholar]
  26. Lee K. S., Levin D. E. 1992; Dominant mutations in a gene encoding a putative protein-kinase (Bck1) bypass the requirement for a Saccharomyces cerevisiae protein-kinase-C homolog. Mol Cell Biol 12:172–182
    [Google Scholar]
  27. Luyten K., Albertyn J., Fourie Skibbe W., Prior B. A., Ramos J., Thevelein J. M., Hohmann S. 1995; Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371
    [Google Scholar]
  28. Maeda T., Wurgler-Murphy S. M., Saito H. 1994; A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245
    [Google Scholar]
  29. Maeda T., Takekawa M., Saito H. 1995; Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269:554–558
    [Google Scholar]
  30. Martin H., Rodriguez-Pachon J. M., Ruiz C., Nombela C., Molina M. 2000; Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae . J Biol Chem 275:1511–1519
    [Google Scholar]
  31. O'Rourke S. M., Herskowitz I. 1998; The Hog1 MAPK prevents cross talk between the Hog and pheromone response MAPK pathways in Saccharomyces cerevisiae . Genes Dev 12:2874–2886
    [Google Scholar]
  32. O'Rourke S. M., Herskowitz I. 2002; A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch. Mol Cell Biol 22:4739–4749
    [Google Scholar]
  33. Posas F., Saito H. 1998; Activation of the yeast Ssk2 MAP kinase kinase kinase by the Ssk1 two-component response regulator. EMBO J 17:1385–1394
    [Google Scholar]
  34. Posas F., Witten E. A., Saito H. 1998; Requirement of Ste50 for osmostress-induced activation of the Ste11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol Cell Biol 18:5788–5796
    [Google Scholar]
  35. Posas F., Wurgler-Murphy S. M., Maeda T., Witten E. A., Thai T. C., Saito H. 1996; Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SNL1-YPD1-SSK1 ‘two-component’ osmosensor. Cell 88:865–875
    [Google Scholar]
  36. Proft M., Serrano R. 1999; Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae : bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol Cell Biol 19:537–546
    [Google Scholar]
  37. Proft M., Pascual-Ahuir A., de Nadal E., Arino J., Serrano R., Posas F. 2001; Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. EMBO J 20:1123–1133
    [Google Scholar]
  38. Raitt D. C., Posas F., Saito H. 2000; Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J 19:4623–4631
    [Google Scholar]
  39. Reiser V., Ammerer G., Ruis H. 1999; Nucleocytoplasmic traffic of MAP kinases. Gene Expr 7:247–254
    [Google Scholar]
  40. Reiser V., Salah S. M., Ammerer G. 2000; Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nature Cell Biol 2:620–627
    [Google Scholar]
  41. Rep M., Reiser V., Gartner U., Thevelein J. M., Hohmann S., Ammerer G., Ruis H. 1999; Osmotic stress-induced gene expression in Saccharomyces cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol Cell Biol 19:5474–5485
    [Google Scholar]
  42. Siderius M., Rots E., Mager W. H. 1997; High-osmolarity signalling in Saccharomyces cerevisiae is modulated in a carbon-source-dependent fashion. Microbiology 143:3241–3250
    [Google Scholar]
  43. Siderius M., Van Wuytswinkel O., Reijenga K. A., Kelders M., Mager W. H. 2000; The control of intracellular glycerol in Saccharomyces cerevisiae influences osmotic stress response and resistance to increased temperature. Mol Microbiol 36:1381–1390
    [Google Scholar]
  44. Tamás M. J., Luyten K., Sutherland F. C. W. 10 other authors 1999; Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104
    [Google Scholar]
  45. Tao W., Deschenes R. J., Fassler J. S. 1999; Intracellular glycerol levels modulate the activity of Sln1p, a Saccharomyces cerevisiae two-component regulator. J Biol Chem 274:360–367
    [Google Scholar]
  46. Verna J., Lodder A., Lee K., Vagts A., Ballester R. 1997; A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae . Genetics 94:13804–13809
    [Google Scholar]
  47. Warmka J., Hanneman J., Lee J., Amin D., Ota I. 2001; Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol Cell Biol 21:51–60
    [Google Scholar]
  48. Wurgler-Murphy S. M., Maeda T., Witten E. A., Saito H. 1997; Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol Cell Biol 17:1289–1297
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.26110-0
Loading
/content/journal/micro/10.1099/mic.0.26110-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error