1887

Abstract

The pleiotropic phenotype of an auxotrophic mutant (SVQ295) of HH103 has been investigated. SVQ295 forms colonies that are translucent, produce more slime and absorb less Congo red than those of wild-type strain HH103. SVQ295 did not grow in minimal medium unless the culture was supplemented with thiamin and adenine or with thiamin and AICA-riboside (5-aminoimidazole-4-carboxamide 1---ribofuranoside), an intermediate of purine biosynthesis. Bacterial cultures supplemented with AICA-riboside or adenine reached the same culture density, although the doubling time of SVQ295 cultures containing AICA-riboside was clearly longer. SVQ295 induced pseudonodules on and failed to nodulate six different legumes. On , however, nodules showing nitrogenase activity and containing infected plant cells were formed. SVQ295 showed auto-agglutination when grown in liquid TY medium and its lipopolysaccharide (LPS) electrophoretic profile differed from that of its parental strain HH103-1. In addition, four monoclonal antibodies that recognize the LPS of HH103 failed to recognize the LPS produced by SVQ295. In contrast, H-NMR spectra of K-antigen capsular polysaccharides (KPS) produced by SVQ295 and the wild-type strain HH103 were similar. Co-inoculation of soybean plants with SVQ295 and SVQ116 (a mutant derivative of HH103) produced nitrogen-fixing nodules that were only occupied by SVQ116.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26099-0
2003-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491807.html?itemId=/content/journal/micro/10.1099/mic.0.26099-0&mimeType=html&fmt=ahah

References

  1. Barsomian, G. D., Urzainqui, A., Lohman, K. & Walker, G. C. ( 1992; ). Rhizobium meliloti mutants unable to synthesize anthranilate display a novel symbiotic phenotype. J Bacteriol 174, 4416–4426.
    [Google Scholar]
  2. Becker, A. & Pühler, A. ( 1998; ). Production of exopolysaccharides. In The Rhizobiaceae: Molecular Biology of Model Plant-associated Bacteria, pp. 97–118. Edited by H. P. Spaink, A. Kondorosi & P. J. J. Hooykaas. Dordrecht: Kluwer.
  3. Bergensen, F. J. ( 1961; ). The growth of Rhizobium in synthetic media. Aust J Biol Sci 14, 349–360.
    [Google Scholar]
  4. Beringer, J. E. ( 1974; ). R factor transfer in Rhizobium leguminosarum. J Gen Microbiol 84, 188–198.[CrossRef]
    [Google Scholar]
  5. Beringer, J. E., Brewin, N. J. & Johnston, A. W. B. ( 1980; ). The genetic analysis of Rhizobium in relation to symbiotic nitrogen fixation. Heredity 45, 161–186.[CrossRef]
    [Google Scholar]
  6. Beringer, J. E., Ruiz-Sainz, J. E. & Johnston, A. W. B. ( 1984; ). Methods for the genetic manipulation of Rhizobium. In Microbiological Methods for Environmental Biotechnology, pp. 79–94. Edited by J. M. Grainger & J. M. Lynch. Orlando, FL: Academic Press.
  7. Boyer, H. W. & Roulland-Dussoix, D. ( 1969; ). Complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41, 459–472.[CrossRef]
    [Google Scholar]
  8. Buendía-Clavería, A. M., Ruiz-Sainz, J. E., Cubo-Sánchez, T. & Pérez Silva, J. ( 1986; ). Studies of symbiotic plasmids in Rhizobium trifolii and fast-growing bacteria that nodulate soybean. J Appl Bacteriol 17, 155–160.
    [Google Scholar]
  9. Buendía-Clavería, A. M., Chamber, M. & Ruiz-Sainz, J. E. ( 1989; ). A comparative study of the physiological characteristics, plasmid content and symbiotic properties of different Rhizobium fredii in European soils. Syst Appl Bacteriol 17, 155–160.
    [Google Scholar]
  10. Buendía-Clavería, A. M., Moussaid, A., Moreno, F. J., Cubo, T., Torres, A., Pueppke, S. & Ruiz-Sainz, J. E. ( 1996; ). Características fisiológicas y simbióticas de un mutante de Rhizobium fredii auxótrofo para la adenina y la tiamina. In Avances en la Investigación sobre Fijación Biológica de Nitrógeno, pp. 233–235. Edited by A. Chordi Corbo, E. Martínez Molina, P. F. Mateos González & M. E. Velázquez Pérez. Excma. Diputación Provincial de Salamanca. ISBN 84-7797-113-7.
  11. Bult, C. J., White, O., Olsen, C. J. & 20 other authors ( 1996; ). Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073.[CrossRef]
    [Google Scholar]
  12. Day, B. R., Loh, J. T., Cohn, J. & Stacey, G. ( 2000; ). Signal exchange involved in the establishment of the Bradyrhizobium legume symbiosis. In Prokaryotic Nitrogen Fixation: a Model System for the Analysis of a Biological Process, pp. 385–415. Edited by E. W. Triplett. Wymondham, UK: Horizon Scientific Press.
  13. Denarié, J., Truchet, G. & Bergeron, B. ( 1976; ). Effects of some mutations on symbiotic properties of Rhizobium. In Symbiotic Nitrogen Fixation in Plants, pp. 47–61. Edited by P. S. Nutman. Cambridge: Cambridge University Press.
  14. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387–395.[CrossRef]
    [Google Scholar]
  15. Djordjevic, S. P., Ridge, R. W., Chen, H., Redmond, J. W., Batley, M. & Rolfe, B. G. ( 1988; ). Induction of pathogenic-like responses in the legume Macroptilium atropurpureum by a transposon-induced mutant of the fast-growing, broad-host-range Rhizobium strain NGR234. J Bacteriol 170, 1848–1857.
    [Google Scholar]
  16. Djordjevic, S. P., Weinman, J. J., Redmond, J. W., Djordjevic, M. A. & Rolfe, B. G. ( 1996; ). The addition of 5-aminoimidazole-4-carboxamide-riboside to nodulation-defective purine auxotrophs of NGR234 restores bacterial growth but leads to novel root outgrowths on siratro. Mol Plant–Microbe Interact 9, 114–124.[CrossRef]
    [Google Scholar]
  17. Ebbole, D. J. & Zalkin, H. ( 1989; ). Bacillus subtilis pur operon expression and regulation. J Bacteriol 171, 2136–2141.
    [Google Scholar]
  18. Fisher, R. F. & Long, S. R. ( 1992; ). Rhizobium–plant signal exchange. Nature 357, 655–660.[CrossRef]
    [Google Scholar]
  19. Gil-Serrano, A. M., Rodríguez-Carvajal, M. A., Tejero-Mateo, P., Espartero, J. L., Menéndez, M., Corzo, J., Ruiz-Sainz, J. E. & Buendía-Clavería, A. M. ( 1999; ). Structural determination of a 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-l-glycero-l-manno-nonulosonic acid-containing homopolysaccharide isolated from Sinorhizobium fredii HH103. Biochem J 342, 527–535.[CrossRef]
    [Google Scholar]
  20. Guerreiro, N., Worland, S., Djordjevic, M. A. & Rolfe, B. G. ( 1998; ). Pleiotrophic alterations in the cellular protein synthesis of Tn5-induced Rhizobium mutants as revealed by two-dimensional gel electrophoresis. In Biological Nitrogen Fixation for the 21st Century, p. 285. Edited by C. Elmerich, A. Kondorosi & W. E. Newton. Dordrecht: Kluwer.
  21. Jackson, M., Berther, F. X., Otal, I., Rauzier, J., Martin, C., Gicquel, B. & Guilhot, C. ( 1996; ). The Mycobacterium tuberculosis purine biosynthetic pathway: isolation and characterization of the purC and purL genes. Microbiology 14, 2439–2447.
    [Google Scholar]
  22. Kaneko, T., Sato, S., Kotani, H. & 21 other authors ( 1996; ). Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3, 109–136.[CrossRef]
    [Google Scholar]
  23. Kannenberg, E. L. & Carlson, R. W. ( 2001; ). Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol Microbiol 39, 379–391.[CrossRef]
    [Google Scholar]
  24. Kannenberg, E. L., Reuhs, B. L., Fosberg, L. S. & Carlson, R. W. ( 1998; ). Lipopolysaccharide and K-antigens: their structures, biosynthesis and functions. In The Rhizobiaceae: Molecular Biology of Model Plant-associated Bacteria, pp. 119–154. Edited by H. P. Spaink, A. Kondorosi & P. J. J. Hooykaas. Dordrecht: Kluwer.
  25. Kapp, D., Niehaus, K., Quandt, J., Müller, P. & Pühler, A. ( 1990; ). Cooperative action of Rhizobium meliloti nodulation and infection mutants during the process of forming mixed infected alfalfa nodules. Plant Cell 2, 139–151.[CrossRef]
    [Google Scholar]
  26. Kilstrup, M., Jessing, S. G., Wichmand-Jorgensen, S. B., Madsen, M. & Nilsson, D. ( 1998; ). Activation control of pur gene expression in Lactococcus lactis: proposal for a consensus activator binding sequence based on deletion analysis and site-directed mutagenesis of purC and purD promoter regions. J Bacteriol 180, 3900–3906.
    [Google Scholar]
  27. Kim, C. H., Kuykendall, L. D., Shah, K. S. & Keister, D. L. ( 1988; ). Induction of symbiotically defective auxotrophic mutants of Rhizobium fredii HH303 by transposon mutagenesis. Appl Environ Microbiol 54, 423–427.
    [Google Scholar]
  28. Kittelberger, R. & Hilbink, F. ( 1993; ). Sensitive silver-staining detection of bacterial lipopolysaccharides in polyacrylamide gels. J Biochem Biophys Methods 26, 81–86.[CrossRef]
    [Google Scholar]
  29. Klein, S., Hirsch, A. M., Smith, C. A. & Signer, E. R. ( 1988; ). Interaction of nod and exo Rhizobium meliloti in alfalfa nodulation. Mol Plant–Microbe Interact 1, 94–100.[CrossRef]
    [Google Scholar]
  30. Köplin, R., Wang, G., Hötte, B., Priefer, U. B. & Pühler, A. ( 1993; ). A 3·9-kb DNA region of Xanthomonas campestris pv campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J Bacteriol 175, 7786–7792.
    [Google Scholar]
  31. Lamrabet, Y., Bellogín, R. A., Cubo, T. & 11 other authors ( 1999; ). Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans. Mol Plant–Microbe Interact 12, 207–217.[CrossRef]
    [Google Scholar]
  32. Lesse, A. J., Campagnari, A. A., Bittner, W. E. & Apicella, M. A. ( 1990; ). Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel-electrophoresis. J Immunol Methods 126, 109–117.[CrossRef]
    [Google Scholar]
  33. Lucas, M. M., Peart, J. L., Brewin, N. J. & Kannenberg, E. L. ( 1996; ). Isolation of monoclonal antibodies reacting with the core component of lipopolysaccharide from Rhizobium leguminosarum strain 3841 and mutant derivatives. J Bacteriol 178, 2727–2733.
    [Google Scholar]
  34. Madinabeitia, N., Bellogín, R. A., Buendía-Clavería, A. M. & 11 other authors ( 2002; ). Sinorhizobium fredii HH103 has a truncated nolO gene due to a −1 frameshift mutation that is conserved among other geographically distant S. fredii strains. Mol Plant–Microbe Interact 15, 150–159.[CrossRef]
    [Google Scholar]
  35. Maniatis, T. A., Fritsch, E. F. & Sambrook, J. ( 1982; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  36. Müller, P., Hynes, M., Kapp, D., Niehaus, K. & Pühler, A. ( 1988; ). Two classes of Rhizobium meliloti infection mutants differ in exopolysaccharide production and in coinoculation properties with nodulation mutants. Mol Gen Genet 211, 17–26.[CrossRef]
    [Google Scholar]
  37. Neuhard, J. & Nygaard, P. ( 1987; ). Purines and pyrimidines. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, pp. 445–473. Edited by F. C. Neidhardt and others. Washington, DC: American Society for Microbiology.
  38. Newman, J. D., Schultz, B. W. & Noel, K. D. ( 1992; ). Dissection of nodule development by supplementation of Rhizobium leguminosarum biovar phaseoli purine auxotrophs with 4-aminoimidazole-5-carboxamide riboside. Plant Physiol 99, 401–408.[CrossRef]
    [Google Scholar]
  39. Newman, J. D., Diebold, R. J., Schultz, B. W. & Noel, K. D. ( 1994; ). Infection of soybean and pea nodules by Rhizobium spp. purine auxotrophs in the presence of 5-aminoimidazole-4-carboxamide riboside. J Bacteriol 176, 3286–3294.
    [Google Scholar]
  40. Newman, J. D., Rosovitz, M. J. & Noel, K. D. ( 1995; ). Requirement for rhizobial production of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) for infection of bean. Mol Plant–Microbe Interact 8, 407–414.[CrossRef]
    [Google Scholar]
  41. Noel, K. D., Sánchez, A., Fernández, L., Leemans, J. & Cevallos, M. A. ( 1984; ). Rhizobium phaseoli symbiotic mutants with transposon Tn5 insertions. J Bacteriol 158, 148–155.
    [Google Scholar]
  42. Noel, K. D., Diebold, R. J., Cava, J. R. & Brink, B. A. ( 1988; ). Rhizobial purine and pyrimidine auxotrophs: nutrient supplementation, genetic analysis, and the symbiotic requirement for de novo purine biosynthesis. Arch Microbiol 149, 499–506.[CrossRef]
    [Google Scholar]
  43. Pain, A. N. ( 1979; ). Symbiotic properties of antibiotic-resistant and auxotrophic mutants of Rhizobium leguminosarum. J Appl Bacteriol 47, 53–64.[CrossRef]
    [Google Scholar]
  44. Pankhurst, C. E. & Schwinghamer, E. A. ( 1974; ). Adenine requirement for nodulation of pea by an auxotrophic mutant of Rhizobium leguminosarum. Arch Microbiol 100, 219–238.[CrossRef]
    [Google Scholar]
  45. Peltonen, T. & Mäntsälä, P. ( 1999; ). Isolation and characterization of a purC(orf)QLF operon from Lactococcus [correction of Lactobacillus] lactis MG1614. Mol Gen Genet 261, 31–41.[CrossRef]
    [Google Scholar]
  46. Perotto, S., Brewin, N. J. & Kannenberg, E. L. ( 1994; ). Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of R. leguminosarum strain 3841. Mol Plant–Microbe Interact 7, 99–112.[CrossRef]
    [Google Scholar]
  47. Priefer, U. B. ( 1989; ). Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bacteriol 171, 6161–6168.
    [Google Scholar]
  48. Reuhs, B. L., Geller, D. P., Kim, J. S., Fox, J. E., Kumar Kolli, V. S. & Pueppke, S. G. ( 1998; ). Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl Environ Microbiol 64, 4930–4938.
    [Google Scholar]
  49. Reuhs, B. L., Stephens, S. B., Geller, D. P., Kim, J. S., Glenn, J., Przytycki, J. & Ojanen-Reuhs, T. ( 1999; ). Epitope identification for a panel of anti-Sinorhizobium meliloti monoclonal antibodies and application to the analysis of K antigens and lipopolysaccharides from bacteroids. Appl Environ Microbiol 65, 5186–5191.
    [Google Scholar]
  50. Sampei, G. & Mizobuchi, K. ( 1989; ). The organization of the purL gene encoding 5′-phosphoribosylformylglycinamide amidotransferase of Escherichia coli. J Biol Chem 264, 21230–21238.
    [Google Scholar]
  51. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  52. Simon, R. ( 1984; ). High frequency mobilization of gram-negative bacterial replicons by the in vivo constructed Tn5-Mob transposon. Mol Gen Genet 196, 413–420.[CrossRef]
    [Google Scholar]
  53. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1, 784–791.[CrossRef]
    [Google Scholar]
  54. Soberon, M., Lopez, O., Miranda, J., Tabche, M. L. & Morera, C. ( 1997; ). Genetic evidence for 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as a negative effector of cytochrome terminal oxidase cbb3 production in Rhizobium etli. Mol Gen Genet 254, 665–673.[CrossRef]
    [Google Scholar]
  55. Spaink, H. P., Aarts, A., Stacey, G., Bloemberg, G. V., Lugtenberg, B. J. J. & Kennedy, E. P. ( 1992; ). Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin-layer chromatography. Mol Plant–Microbe Interact 5, 72–80.[CrossRef]
    [Google Scholar]
  56. Vincent, J. M. ( 1970; ). A Manual for the Practical Study of Root Nodule Bacteria. Oxford, UK: Blackwell Scientific Publications.
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26099-0
Loading
/content/journal/micro/10.1099/mic.0.26099-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error