1887

Abstract

The pleiotropic phenotype of an auxotrophic mutant (SVQ295) of HH103 has been investigated. SVQ295 forms colonies that are translucent, produce more slime and absorb less Congo red than those of wild-type strain HH103. SVQ295 did not grow in minimal medium unless the culture was supplemented with thiamin and adenine or with thiamin and AICA-riboside (5-aminoimidazole-4-carboxamide 1---ribofuranoside), an intermediate of purine biosynthesis. Bacterial cultures supplemented with AICA-riboside or adenine reached the same culture density, although the doubling time of SVQ295 cultures containing AICA-riboside was clearly longer. SVQ295 induced pseudonodules on and failed to nodulate six different legumes. On , however, nodules showing nitrogenase activity and containing infected plant cells were formed. SVQ295 showed auto-agglutination when grown in liquid TY medium and its lipopolysaccharide (LPS) electrophoretic profile differed from that of its parental strain HH103-1. In addition, four monoclonal antibodies that recognize the LPS of HH103 failed to recognize the LPS produced by SVQ295. In contrast, H-NMR spectra of K-antigen capsular polysaccharides (KPS) produced by SVQ295 and the wild-type strain HH103 were similar. Co-inoculation of soybean plants with SVQ295 and SVQ116 (a mutant derivative of HH103) produced nitrogen-fixing nodules that were only occupied by SVQ116.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26099-0
2003-07-01
2020-07-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491807.html?itemId=/content/journal/micro/10.1099/mic.0.26099-0&mimeType=html&fmt=ahah

References

  1. Barsomian G. D., Urzainqui A., Lohman K., Walker G. C.. 1992; Rhizobium meliloti mutants unable to synthesize anthranilate display a novel symbiotic phenotype. J Bacteriol174:4416–4426
    [Google Scholar]
  2. Becker A., Pühler A.. 1998; Production of exopolysaccharides. In The Rhizobiaceae: Molecular Biology of Model Plant-associated Bacteria pp 97–118 Edited by Spaink H. P., Kondorosi A., Hooykaas P. J. J.. Dordrecht: Kluwer;
    [Google Scholar]
  3. Bergensen F. J.. 1961; The growth of Rhizobium in synthetic media. Aust J Biol Sci14:349–360
    [Google Scholar]
  4. Beringer J. E.. 1974; R factor transfer in Rhizobium leguminosarum . J Gen Microbiol84:188–198
    [Google Scholar]
  5. Beringer J. E., Brewin N. J., Johnston A. W. B.. 1980; The genetic analysis of Rhizobium in relation to symbiotic nitrogen fixation. Heredity45:161–186
    [Google Scholar]
  6. Beringer J. E., Ruiz-Sainz J. E., Johnston A. W. B.. 1984; Methods for the genetic manipulation of Rhizobium . In Microbiological Methods for Environmental Biotechnology pp 79–94 Edited by Grainger J. M., Lynch J. M.. Orlando, FL: Academic Press;
    [Google Scholar]
  7. Boyer H. W., Roulland-Dussoix D.. 1969; Complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol41:459–472
    [Google Scholar]
  8. Buendía-Clavería A. M., Ruiz-Sainz J. E., Cubo-Sánchez T., Pérez Silva J.. 1986; Studies of symbiotic plasmids in Rhizobium trifolii and fast-growing bacteria that nodulate soybean. J Appl Bacteriol17:155–160
    [Google Scholar]
  9. Buendía-Clavería A. M., Chamber M., Ruiz-Sainz J. E.. 1989; A comparative study of the physiological characteristics, plasmid content and symbiotic properties of different Rhizobium fredii in European soils. Syst Appl Bacteriol17:155–160
    [Google Scholar]
  10. Buendía-Clavería A. M., Moussaid A., Moreno F. J., Cubo T., Torres A., Pueppke S., Ruiz-Sainz J. E.. 1996; Características fisiológicas y simbióticas de un mutante de Rhizobium fredii auxótrofo para la adenina y la tiamina. In Avances en la Investigación sobre Fijación Biológica de Nitrógeno pp 233–235 Edited by Chordi Corbo A., E Martínez Molina., P. F Mateos González., M. E Velázquez Pérez.. Excma. Diputación Provincial de Salamanca;ISBN 84-7797-113-7.
    [Google Scholar]
  11. Bult C. J., White O., Olsen C. J.. & 20 other authors. 1996; Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii . Science273:1058–1073
    [Google Scholar]
  12. Day B. R., Loh J. T., Cohn J., Stacey G.. 2000; Signal exchange involved in the establishment of the Bradyrhizobium legume symbiosis. In Prokaryotic Nitrogen Fixation: a Model System for the Analysis of a Biological Process pp 385–415 Edited by Triplett E. W.. Wymondham, UK: Horizon Scientific Press;
    [Google Scholar]
  13. Denarié J., Truchet G., Bergeron B.. 1976; Effects of some mutations on symbiotic properties of Rhizobium . In Symbiotic Nitrogen Fixation in Plants pp 47–61 Edited by Nutman P. S.. Cambridge: Cambridge University Press;
    [Google Scholar]
  14. Devereux J., Haeberli P., Smithies O.. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res12:387–395
    [Google Scholar]
  15. Djordjevic S. P., Ridge R. W., Chen H., Redmond J. W., Batley M., Rolfe B. G.. 1988; Induction of pathogenic-like responses in the legume Macroptilium atropurpureum by a transposon-induced mutant of the fast-growing, broad-host-range Rhizobium strain NGR234. J Bacteriol170:1848–1857
    [Google Scholar]
  16. Djordjevic S. P., Weinman J. J., Redmond J. W., Djordjevic M. A., Rolfe B. G.. 1996; The addition of 5-aminoimidazole-4-carboxamide-riboside to nodulation-defective purine auxotrophs of NGR234 restores bacterial growth but leads to novel root outgrowths on siratro. Mol Plant–Microbe Interact9:114–124
    [Google Scholar]
  17. Ebbole D. J., Zalkin H.. 1989; Bacillus subtilis pur operon expression and regulation. J Bacteriol171:2136–2141
    [Google Scholar]
  18. Fisher R. F., Long S. R.. 1992; Rhizobium –plant signal exchange. Nature357:655–660
    [Google Scholar]
  19. Gil-Serrano A. M., Rodríguez-Carvajal M. A., Tejero-Mateo P., Espartero J. L., Menéndez M., Corzo J., Ruiz-Sainz J. E., Buendía-Clavería A. M.. 1999; Structural determination of a 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-l-glycero-l-manno-nonulosonic acid-containing homopolysaccharide isolated from Sinorhizobium fredii HH103. Biochem J342:527–535
    [Google Scholar]
  20. Guerreiro N., Worland S., Djordjevic M. A., Rolfe B. G.. 1998; Pleiotrophic alterations in the cellular protein synthesis of Tn 5 -induced Rhizobium mutants as revealed by two-dimensional gel electrophoresis. In Biological Nitrogen Fixation for the 21st Century p285 Edited by Elmerich C., Kondorosi A., Newton W. E.. Dordrecht: Kluwer;
    [Google Scholar]
  21. Jackson M., Berther F. X., Otal I., Rauzier J., Martin C., Gicquel B., Guilhot C.. 1996; The Mycobacterium tuberculosis purine biosynthetic pathway: isolation and characterization of the purC and purL genes. Microbiology14:2439–2447
    [Google Scholar]
  22. Kaneko T., Sato S., Kotani H.. 21 other authors 1996; Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res3:109–136
    [Google Scholar]
  23. Kannenberg E. L., Carlson R. W.. 2001; Lipid A and O-chain modifications cause Rhizobium lipopolysaccharides to become hydrophobic during bacteroid development. Mol Microbiol39:379–391
    [Google Scholar]
  24. Kannenberg E. L., Reuhs B. L., Fosberg L. S., Carlson R. W.. 1998; Lipopolysaccharide and K-antigens: their structures, biosynthesis and functions. In The Rhizobiaceae: Molecular Biology of Model Plant-associated Bacteria pp 119–154 Edited by Spaink H. P., Kondorosi A., Hooykaas P. J. J. Dordrecht: Kluwer;
    [Google Scholar]
  25. Kapp D., Niehaus K., Quandt J., Müller P., Pühler A.. 1990; Cooperative action of Rhizobium meliloti nodulation and infection mutants during the process of forming mixed infected alfalfa nodules. Plant Cell2:139–151
    [Google Scholar]
  26. Kilstrup M., Jessing S. G., Wichmand-Jorgensen S. B., Madsen M., Nilsson D.. 1998; Activation control of pur gene expression in Lactococcus lactis : proposal for a consensus activator binding sequence based on deletion analysis and site-directed mutagenesis of purC and purD promoter regions. J Bacteriol180:3900–3906
    [Google Scholar]
  27. Kim C. H., Kuykendall L. D., Shah K. S., Keister D. L.. 1988; Induction of symbiotically defective auxotrophic mutants of Rhizobium fredii HH303 by transposon mutagenesis. Appl Environ Microbiol54:423–427
    [Google Scholar]
  28. Kittelberger R., Hilbink F.. 1993; Sensitive silver-staining detection of bacterial lipopolysaccharides in polyacrylamide gels. J Biochem Biophys Methods26:81–86
    [Google Scholar]
  29. Klein S., Hirsch A. M., Smith C. A., Signer E. R.. 1988; Interaction of nod and exo Rhizobium meliloti in alfalfa nodulation. Mol Plant–Microbe Interact1:94–100
    [Google Scholar]
  30. Köplin R., Wang G., Hötte B., Priefer U. B., Pühler A.. 1993; A 3·9-kb DNA region of Xanthomonas campestris pv campestris that is necessary for lipopolysaccharide production encodes a set of enzymes involved in the synthesis of dTDP-rhamnose. J Bacteriol175:7786–7792
    [Google Scholar]
  31. Lamrabet Y., Bellogín R. A., Cubo T.. 11 other authors 1999; Mutation in GDP-fucose synthesis genes of Sinorhizobium fredii alters Nod factors and significantly decreases competitiveness to nodulate soybeans. Mol Plant–Microbe Interact12:207–217
    [Google Scholar]
  32. Lesse A. J., Campagnari A. A., Bittner W. E., Apicella M. A.. 1990; Increased resolution of lipopolysaccharides and lipooligosaccharides utilizing tricine-sodium dodecyl sulfate-polyacrylamide gel-electrophoresis. J Immunol Methods126:109–117
    [Google Scholar]
  33. Lucas M. M., Peart J. L., Brewin N. J., Kannenberg E. L.. 1996; Isolation of monoclonal antibodies reacting with the core component of lipopolysaccharide from Rhizobium leguminosarum strain 3841 and mutant derivatives. J Bacteriol178:2727–2733
    [Google Scholar]
  34. Madinabeitia N., Bellogín R. A., Buendía-Clavería A. M.. 11 other authors 2002; Sinorhizobium fredii HH103 has a truncated nolO gene due to a −1 frameshift mutation that is conserved among other geographically distant S. fredii strains. Mol Plant–Microbe Interact15:150–159
    [Google Scholar]
  35. Maniatis T. A., Fritsch E. F., Sambrook J.. 1982; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Müller P., Hynes M., Kapp D., Niehaus K., Pühler A.. 1988; Two classes of Rhizobium meliloti infection mutants differ in exopolysaccharide production and in coinoculation properties with nodulation mutants. Mol Gen Genet211:17–26
    [Google Scholar]
  37. Neuhard J., Nygaard P.. others 1987; Purines and pyrimidines. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology pp 445–473 Edited by Neidhardt F. C.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  38. Newman J. D., Schultz B. W., Noel K. D.. 1992; Dissection of nodule development by supplementation of Rhizobium leguminosarum biovar phaseoli purine auxotrophs with 4-aminoimidazole-5-carboxamide riboside. Plant Physiol99:401–408
    [Google Scholar]
  39. Newman J. D., Diebold R. J., Schultz B. W., Noel K. D.. 1994; Infection of soybean and pea nodules by Rhizobium spp. purine auxotrophs in the presence of 5-aminoimidazole-4-carboxamide riboside. J Bacteriol176:3286–3294
    [Google Scholar]
  40. Newman J. D., Rosovitz M. J., Noel K. D.. 1995; Requirement for rhizobial production of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) for infection of bean. Mol Plant–Microbe Interact8:407–414
    [Google Scholar]
  41. Noel K. D., Sánchez A., Fernández L., Leemans J., Cevallos M. A.. 1984; Rhizobium phaseoli symbiotic mutants with transposon Tn 5 insertions. J Bacteriol158:148–155
    [Google Scholar]
  42. Noel K. D., Diebold R. J., Cava J. R., Brink B. A.. 1988; Rhizobial purine and pyrimidine auxotrophs: nutrient supplementation, genetic analysis, and the symbiotic requirement for de novo purine biosynthesis. Arch Microbiol149:499–506
    [Google Scholar]
  43. Pain A. N.. 1979; Symbiotic properties of antibiotic-resistant and auxotrophic mutants of Rhizobium leguminosarum . J Appl Bacteriol47:53–64
    [Google Scholar]
  44. Pankhurst C. E., Schwinghamer E. A.. 1974; Adenine requirement for nodulation of pea by an auxotrophic mutant of Rhizobium leguminosarum . Arch Microbiol100:219–238
    [Google Scholar]
  45. Peltonen T., Mäntsälä P.. 1999; Isolation and characterization of a purC(orf)QLF operon from Lactococcus [correction of Lactobacillus ] lactis MG1614. Mol Gen Genet261:31–41
    [Google Scholar]
  46. Perotto S., Brewin N. J., Kannenberg E. L.. 1994; Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of R. leguminosarum strain 3841. Mol Plant–Microbe Interact7:99–112
    [Google Scholar]
  47. Priefer U. B.. 1989; Genes involved in lipopolysaccharide production and symbiosis are clustered on the chromosome of Rhizobium leguminosarum biovar viciae VF39. J Bacteriol171:6161–6168
    [Google Scholar]
  48. Reuhs B. L., Geller D. P., Kim J. S., Fox J. E., Kumar Kolli V. S., Pueppke S. G.. 1998; Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl Environ Microbiol64:4930–4938
    [Google Scholar]
  49. Reuhs B. L., Stephens S. B., Geller D. P., Kim J. S., Glenn J., Przytycki J., Ojanen-Reuhs T.. 1999; Epitope identification for a panel of anti- Sinorhizobium meliloti monoclonal antibodies and application to the analysis of K antigens and lipopolysaccharides from bacteroids. Appl Environ Microbiol65:5186–5191
    [Google Scholar]
  50. Sampei G., Mizobuchi K.. 1989; The organization of the purL gene encoding 5′-phosphoribosylformylglycinamide amidotransferase of Escherichia coli . J Biol Chem264:21230–21238
    [Google Scholar]
  51. Sanger F., Nicklen S., Coulson A. R.. 1977; DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A74:5463–5467
    [Google Scholar]
  52. Simon R.. 1984; High frequency mobilization of gram-negative bacterial replicons by the in vivo constructed Tn 5 -Mob transposon. Mol Gen Genet196:413–420
    [Google Scholar]
  53. Simon R., Priefer U., Pühler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology1:784–791
    [Google Scholar]
  54. Soberon M., Lopez O., Miranda J., Tabche M. L., Morera C.. 1997; Genetic evidence for 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) as a negative effector of cytochrome terminal oxidase cbb3 production in Rhizobium etli . Mol Gen Genet254:665–673
    [Google Scholar]
  55. Spaink H. P., Aarts A., Stacey G., Bloemberg G. V., Lugtenberg B. J. J., Kennedy E. P.. 1992; Detection and separation of Rhizobium and Bradyrhizobium Nod metabolites using thin-layer chromatography. Mol Plant–Microbe Interact5:72–80
    [Google Scholar]
  56. Vincent J. M.. 1970; A Manual for the Practical Study of Root Nodule Bacteria Oxford, UK: Blackwell Scientific Publications;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26099-0
Loading
/content/journal/micro/10.1099/mic.0.26099-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error