1887

Abstract

Fluorescent pseudomonads secrete yellow-green siderophores named pyoverdines or pseudobactins. These comprise a dihydroxyquinoline derivative joined to a type-specific peptide and, usually, a carboxylic acid or amide. In strain PAO1, six genes that encode proteins required for pyoverdine synthesis ( genes) have been identified previously. Expression of all of these genes requires an alternative sigma factor PvdS. The purpose of this research was to identify other genes that are required for pyoverdine synthesis in PAO1. Fourteen candidate genes were identified from the PAO1 genome sequence on the basis of their location in the genome, the functions of homologues in other bacteria, and whether their expression was likely to be PvdS-dependent. The candidate genes were mutated and the effects of the mutations on pyoverdine production were determined. Eight new genes were identified. The presence of homologues of genes in other strains of was determined by Southern blotting and in other fluorescent pseudomonads by interrogation of genome sequences. Five genes were restricted to strains of that make the same pyoverdine as strain PAO1, suggesting that they direct synthesis of the type-specific peptide. The remaining genes were present in all strains of that were examined and homologues were present in other species. These genes are likely to direct synthesis of the dihydroxyquinoline moiety and the attached carboxylic acid/amide group. It is likely that most if not all of the genes required for pyoverdine synthesis in PAO1 have now been identified and this will form the basis for a biochemical description of the pathway of pyoverdine synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26085-0
2003-04-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/4/mic149833.html?itemId=/content/journal/micro/10.1099/mic.0.26085-0&mimeType=html&fmt=ahah

References

  1. Abdallah, M. A. ( 1991; ). Pyoverdines and pseudobactins. In CRC Handbook of Microbial Iron Chelates, pp. 139–153. Edited by G. Winklemann. Boca Raton, FL: CRC Press.
  2. Ackerley, D. F., Caradoc-Davies, T. T. & Lamont, I. L. ( 2003; ). Substrate specificity of the non-ribosomal peptide synthetase PvdD from Pseudomonas aeruginosa. J Bacteriol (in press).
    [Google Scholar]
  3. Ambrosi, C., Leoni, L., Putignani, L., Orsi, N. & Visca, P. ( 2000; ). Pseudobactin biogenesis in the plant growth-promoting rhizobacterium Pseudomonas strain B10: identification and functional analysis of the l-ornithine N(5)-oxygenase (psbA) gene. J Bacteriol 182, 6233–6238.[CrossRef]
    [Google Scholar]
  4. Ankenbauer, R., Hanne, L. F. & Cox, C. D. ( 1986; ). Mapping of mutations in Pseudomonas aeruginosa defective in pyoverdin production. J Bacteriol 167, 7–11.
    [Google Scholar]
  5. Barany, F. ( 1988; ). Procedures for linker insertion mutagenesis and use of new kanamycin resistance cassettes. DNA Protein Eng Tech 1, 29–44.
    [Google Scholar]
  6. Baysse, C., Budzikiewicz, H., Uria Fernandez, D. & Cornelis, P. ( 2002; ). Impaired maturation of the siderophore pyoverdine chromophore in Pseudomonas fluorescens ATCC 17400 deficient for the cytochrome c biogenesis protein CcmC. FEBS Lett 523, 23–28.[CrossRef]
    [Google Scholar]
  7. Beare, P. A., For, R. J., Martin, L. W. & Lamont, I. L. ( 2003; ). Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol 47, 195–207.
    [Google Scholar]
  8. Budzikiewicz, H. ( 1993; ). Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104, 209–228.[CrossRef]
    [Google Scholar]
  9. Casabadan, M. J. & Cohen, S. N. ( 1980; ). Analysis of gene control signals by DNA fusion and cloning in Escherichia coli cells. Gene 6, 23–28.
    [Google Scholar]
  10. Chen, W. & Kuo, T. ( 1993; ). A simple and rapid method for the preparation of gram-negative bacterial genomic DNA. Nucleic Acids Res 21, 2260.[CrossRef]
    [Google Scholar]
  11. Croft, L., Beatson, S. A., Whitchurch, C. B., Huang, B., Blakeley, R. L. & Mattick, J. S. ( 2000; ). An interactive web-based Pseudomonas aeruginosa genome database: discovery of new genes, pathways and structures. Microbiology 146, 2351–2364.
    [Google Scholar]
  12. Cunliffe, H. E., Merriman, T. R. & Lamont, I. L. ( 1995; ). Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. J Bacteriol 177, 2744–2750.
    [Google Scholar]
  13. Devereux, J., Haeberli, P. & Smithies, O. ( 1984; ). A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12, 387–395.[CrossRef]
    [Google Scholar]
  14. Grocock, R. J. & Sharp, P. M. ( 2002; ). Synonymous codon usage in Pseudomonas aeruginosa PAO1. Gene 289, 131–139.[CrossRef]
    [Google Scholar]
  15. Hamood, A. N., Colmer, J. A., Ochsner, U. A. & Vasil, M. L. ( 1996; ). Isolation and characterization of a Pseudomonas aeruginosa gene, ptxR, which positively regulates exotoxin A production. Mol Microbiol 21, 97–110.[CrossRef]
    [Google Scholar]
  16. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  17. Higgins, C. F. ( 1992; ). ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8, 67–113.[CrossRef]
    [Google Scholar]
  18. Higgins, C. F. ( 2001; ). ABC transporters: physiology, structure and mechanism – an overview. Res Microbiol 152, 205–210.[CrossRef]
    [Google Scholar]
  19. Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J. & Schweizer, H. P. ( 1998; ). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77–86.[CrossRef]
    [Google Scholar]
  20. Hohnadel, D., Haas, D. & Meyer, J.-M. ( 1986; ). Mapping of mutations affecting pyoverdine production in Pseudomonas aeruginosa. FEMS Microbiol Lett 36, 195–199.[CrossRef]
    [Google Scholar]
  21. Holloway, B. ( 1955; ). Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13, 572–581.[CrossRef]
    [Google Scholar]
  22. Ikai, H. & Yamamoto, S. ( 1997; ). Identification and analysis of a gene encoding l-2,4-diaminobutyrate : 2-ketoglutarate 4-aminotransferase involved in the 1,3-diaminopropane production pathway in Acinetobacter baumannii. J Bacteriol 179, 5118–5125.
    [Google Scholar]
  23. Inokoshi, J., Takeshima, H., Ikeda, H. & Omura, S. ( 1992; ). Cloning and sequencing of the aculeacin A acylase-encoding gene from Actinoplanes utahensis and expression in Streptomyces lividans. Gene 119, 29–35.[CrossRef]
    [Google Scholar]
  24. King, E. O., Ward, M. K. & Raney, D. E. ( 1954; ). Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Med 44, 301–307.
    [Google Scholar]
  25. Kovacevic, S., Tobin, M. B. & Miller, J. R. ( 1990; ). The beta-lactam biosynthesis genes for isopenicillin N epimerase and deacetoxycephalosporin C synthetase are expressed from a single transcript in Streptomyces clavuligerus. J Bacteriol 172, 3952–3958.
    [Google Scholar]
  26. Kratzschmar, J., Krause, M. & Marahiel, M. A. ( 1989; ). Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J Bacteriol 171, 5422–5429.
    [Google Scholar]
  27. Lamont, I. L., Beare, P. A., Ochsner, U., Vasil, A. I. & Vasil, M. L. ( 2002; ). Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 99, 7072–7077.[CrossRef]
    [Google Scholar]
  28. Lehoux, D. E., Sanschagrin, F. & Levesque, R. C. ( 2000; ). Genomics of the 35-kb pvd locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa. FEMS Microbiol Lett 190, 141–146.[CrossRef]
    [Google Scholar]
  29. Leoni, L., Ciervo, A., Orsi, N. & Visca, P. ( 1996; ). Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: effect of Fur and PvdS on promoter activity. J Bacteriol 178, 2299–2313.
    [Google Scholar]
  30. Marahiel, M. A., Stachelhaus, T. & Mootz, H. D. ( 1997; ). Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97, 2651–2674.[CrossRef]
    [Google Scholar]
  31. Markie, D., Hill, D. F. & Poulter, R. ( 1986; ). The construction of a modified drug resistance cassette. Proc Otago Med Sch 64, 69–70.
    [Google Scholar]
  32. McMorran, B. J., Merriman, M. E., Rombel, I. T. & Lamont, I. L. ( 1996; ). Characterisation of the pvdE gene which is required for pyoverdine synthesis in Pseudomonas aeruginosa. Gene 176, 55–59.[CrossRef]
    [Google Scholar]
  33. McMorran, B. J., Kumara, H. M. C. S., Sullivan, K. & Lamont, I. L. ( 2001; ). Involvement of a transformylase enzyme in siderophore synthesis in Pseudomonas aeruginosa. Microbiology 147, 1517–1524.
    [Google Scholar]
  34. Merriman, T. R., Merriman, M. E. & Lamont, I. L. ( 1995; ). Nucleotide sequence of pvdD, a pyoverdine biosynthetic gene from Pseudomonas aeruginosa: PvdD has similarity to peptide synthetases. J Bacteriol 177, 252–258.
    [Google Scholar]
  35. Meyer, J.-M. ( 2000; ). Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch Microbiol 174, 135–142.[CrossRef]
    [Google Scholar]
  36. Meyer, J.-M. & Stintzi, A. ( 1998; ). Iron metabolism and siderophores in Pseudomonas and related species. In Biotechnology Handbooks 10: Pseudomonas, pp. 201–243. Edited by T. C. Montie. New York: Plenum Press.
  37. Meyer, J.-M., Stintzi, A., Vos, D. D., Cornelis, P., Tappe, R., Taraz, K. & Budzikiewicz, H. ( 1997; ). Use of siderophores to type pseudomonads: the three Pseudomonas aeruginosa pyoverdine systems. Microbiology 143, 35–43.[CrossRef]
    [Google Scholar]
  38. Meyer, J.-M., Geoffroy, V. A., Baida, N., Gardan, L., Izard, D., Lemanceau, P., Achouak, W. & Palleroni, N. J. ( 2002; ). Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 68, 2745–2753.[CrossRef]
    [Google Scholar]
  39. Miyazaki, H., Kato, H., Nakazawa, T. & Tsuda, M. ( 1995; ). A positive regulatory gene, pvdS, for expression of pyoverdine biosynthetic genes in Pseudomonas aeruginosa PAO. Mol Gen Genet 248, 17–24.[CrossRef]
    [Google Scholar]
  40. Mootz, H. D. & Marahiel, M. A. ( 1997; ). The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol 179, 6843–6850.
    [Google Scholar]
  41. Mossialos, D., Ochsner, U., Baysse, C. & 8 other authors ( 2002; ). Identification of new, conserved, non-ribosomal peptide synthetases from fluorescent pseudomonads involved in the biosynthesis of the siderophore pyoverdine. Mol Microbiol 45, 1673–1685.[CrossRef]
    [Google Scholar]
  42. Ochsner, U. A., Wilderman, P. J., Vasil, A. I. & Vasil, M. L. ( 2002; ). GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45, 1277–1287.[CrossRef]
    [Google Scholar]
  43. Poole, K. ( 2001; ). Multidrug resistance in Gram-negative bacteria. Curr Opin Microbiol 4, 500–508.[CrossRef]
    [Google Scholar]
  44. Poole, K., Neshat, S., Krebes, K. & Heinrichs, D. ( 1993; ). Cloning and nucleotide analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa. J Bacteriol 175, 4597–4604.
    [Google Scholar]
  45. Rached, E., Hooper, N. M., James, P., Semenza, G., Turner, A. J. & Mantei, N. ( 1990; ). cDNA cloning and expression in Xenopus laevis oocytes of pig renal dipeptidase, a glycosyl-phosphatidylinositol-anchored ectoenzyme. Biochem J 271, 755–760.
    [Google Scholar]
  46. Rombel, I. T. & Lamont, I. L. ( 1992; ). DNA homology between siderophore genes from fluorescent pseudomonads. J Gen Microbiol 138, 181–187.[CrossRef]
    [Google Scholar]
  47. Rombel, I. T., McMorran, B. J. & Lamont, I. L. ( 1995; ). Identification of a DNA sequence motif required for expression of iron-regulated genes in pseudomonads. Mol Gen Genet 246, 519–528.[CrossRef]
    [Google Scholar]
  48. Sambrook, J., Russell, D. W. & Irwin, N. ( 2000; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  49. Stintzi, A., Cornelis, P., Hohnadel, D., Meyer, J.-M., Dean, C., Poole, K., Kourambas, S. & Krishnapillai, V. ( 1996; ). Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO. Microbiology 142, 1181–1190.[CrossRef]
    [Google Scholar]
  50. Stintzi, A., Johnson, Z., Stonehouse, M., Ochsner, U., Meyer, J.-M., Vasil, M. L. & Poole, K. ( 1999; ). The pvc gene cluster of Pseudomonas aeruginosa: role in synthesis of the pyoverdine chromophore and regulation by PtxR and PvdS. J Bacteriol 181, 4118–4124.
    [Google Scholar]
  51. Stover, C. K., Pham, X. Q., Erwin, A. L. & 28 other authors ( 2000; ). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964.[CrossRef]
    [Google Scholar]
  52. Tsuda, M., Miyazaki, H. & Nakazawa, T. ( 1995; ). Genetic and physical mapping of genes involved in pyoverdin production in Pseudomonas aeruginosa PAO. J Bacteriol 177, 423–431.
    [Google Scholar]
  53. Visca, P., Ciervo, A. & Orsi, N. ( 1994; ). Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdine biosynthetic enzyme l-ornithine N 5-oxygenase in Pseudomonas aeruginosa. J Bacteriol 176, 1128–1140.
    [Google Scholar]
  54. Visca, P., Leoni, L., Wilson, M. J. & Lamont, I. L. ( 2002; ). Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol Microbiol 45, 1177–1190.[CrossRef]
    [Google Scholar]
  55. West, S. E. & Iglewski, B. H. ( 1988; ). Codon usage in Pseudomonas aeruginosa. Nucleic Acids Res 16, 9323, 9335.[CrossRef]
    [Google Scholar]
  56. Wilson, M. J., McMorran, B. J. & Lamont, I. L. ( 2001; ). Analysis of promoters recognised by PvdS, an extra-cytoplasmic function sigma factor protein from Pseudomonas aeruginosa. J Bacteriol 183, 2151–2155.[CrossRef]
    [Google Scholar]
  57. Zgurskaya, H. I. & Nikaido, H. ( 2000; ). Multidrug resistance mechanisms: drug efflux across two membranes. Mol Microbiol 37, 219–225.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26085-0
Loading
/content/journal/micro/10.1099/mic.0.26085-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error