1887

Abstract

Whether micro-organisms can live in periapical endodontic lesions of asymptomatic teeth is under debate. The aim of the present study was to visualize and identify micro-organisms within periapical lesions directly, using fluorescence hybridization (FISH) in combination with epifluorescence and confocal laser scanning microscopy (CLSM). Thirty-nine periapical lesions were surgically removed, fixed, embedded in cold polymerizing resin and sectioned. The probe EUB 338, specific for the domain , was used together with a number of species-specific16S rRNA-directed oligonucleotide probes to identify bacteria. To control non-specific binding of EUB 338, probe NON 338 was used. Alternatively, DAPI (4′,6′-diamidino-2-phenylindole) staining was applied to record prokaryotic and eukaryotic DNA in the specimens. Hybridization with NON 338 gave no signals despite background fluorescence of the tissue. The eubacterial probe showed bacteria of different morphotypes in 50 % of the lesions. Rods, spirochaetes and cocci were spread out in areas of the tissue while other parts seemed bacteria-free. Bacteria were also seen to co-aggregate inside the tissue, forming microcolonies. , , and treponemes of phylogenetic Group I were detected with specific probes. In addition, colonies with spp. were seen in some lesions. A number of morphotypes occurred that could not be identified with the specific probes used, indicating the presence of additional bacterial species. CLSM confirmed that bacteria were located in different layers of the tissue. Accordingly, the FISH technique demonstrated mixed consortia of bacteria consisting of rods, spirochaetes and cocci in asymptomatic periapical lesions of root-filled teeth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26077-0
2003-05-01
2019-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491095.html?itemId=/content/journal/micro/10.1099/mic.0.26077-0&mimeType=html&fmt=ahah

References

  1. Amann, R., Binder, B. J., Olson, R. J., Crisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  2. Ashimoto, A., Chen, C., Bakker, I. & Slots, J. ( 1996; ). Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque and advanced periodontitis lesions. Oral Microbiol Immunol 11, 266–273.[CrossRef]
    [Google Scholar]
  3. Byström, A., Happonen, R.-P., Sjögren, U. & Sundqvist, G. ( 1987; ). Healing of periapical lesions of pulpless teeth after endodontic treatment with controlled asepsis. Endod Dent Traumatol 3, 58–63.[CrossRef]
    [Google Scholar]
  4. Choi, B.-K., Paster, B. J., Dewhirst, F. E. & Göbel, U. B. ( 1994; ). Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect Immun 62, 1889–1895.
    [Google Scholar]
  5. Choi, B.-K., Nattermann, H., Grund, S., Haider, W. & Göbel, U. B. ( 1997; ). Spirochetes from digital dermatitis lesions in cattle are closely related to treponemes associated with human periodontitis. Int J Syst Bacteriol 47, 175–181.[CrossRef]
    [Google Scholar]
  6. Conrads, G., Gharbia, S. E., Gulabivala, K., Lambert, F. & Shah, H. N. ( 1997; ). The use of a 16S rDNA directed PCR for the detection of endodontopathogenic bacteria. J Endod 23, 433–438.[CrossRef]
    [Google Scholar]
  7. Dahle, U. R., Tronstad, L. & Olsen, I. ( 1993; ). Observation of an unusually large spirochete in endodontic infection. Oral Microbiol Immunol 8, 251–253.[CrossRef]
    [Google Scholar]
  8. Dewhirst, D. E., Tamer, M. A., Ericson, R. E., Lau, C. N., Levanos, V. A., Boches, S. K., Galvin, J. L. & Paster, B. J. ( 2000; ). The diversity of periodontal spirochetes by 16S rRNA analysis. Oral Microbiol Immunol 15, 196–202.[CrossRef]
    [Google Scholar]
  9. Fabricius, L., Dahlén, G., Öhman, A. E. & Möller, Å. J. R. ( 1982; ). Predominant indigenous oral bacteria isolated from infected root canals after varied time of closure. Scand J Dent Res 90, 134–144.
    [Google Scholar]
  10. Fournier, D., Mouton, C., Lapierre, P., Kato, T., Okuda, K. & Menard, C. ( 2001; ). Porphyromonas gulae sp. nov., an anaerobic, Gram-negative coccobacillus from the gingival sulcus of various animal hosts. Int J Syst Evol Microbiol 51, 1179–1189.[CrossRef]
    [Google Scholar]
  11. Gatti, J. J., Dobeck, J. M., Smith, C., White, R. R., Socransky, S. S. & Skobe, Z. ( 2000; ). Bacteria of asymptomatic periradicular lesions identified by DNA–DNA hybridization. Endod Dent Traumatol 16, 197–204.[CrossRef]
    [Google Scholar]
  12. Hammer, B., Moter, A., Kahl, O., Alberti, G. & Göbel, U. B. ( 2001; ). Visualization of Borrelia burgdorferi sensu lato by fluorescence in situ hybridization (FISH) on whole-body sections of Ixodes ricinus ticks and gerbil skin biopsies. Microbiology 147, 1425–1436.
    [Google Scholar]
  13. Happonen, R. P., Söderling, E., Viander, M., Linko-Kettunen, L. & Pelliniemi, L. J. ( 1985; ). Immunocytochemical demonstration of Actinomyces species and Arachnia propionica in periapical infections. J Oral Pathol 14, 405–413.[CrossRef]
    [Google Scholar]
  14. Iwy, C., Macfarlane, T. W., Mackenzie, D. & Stenhouse, D. ( 1990; ). The microbiology of periapical granulomas. Oral Surg Oral Med Oral Path 69, 502–505.[CrossRef]
    [Google Scholar]
  15. Jung, I.-Y., Choi, B.-K., Kum, K.-Y., Yoo, Y.-J., Yoon, T.-C., Lee, S.-J. & Lee, C. Y. ( 2001; ). Identification of oral spirochetes at the species level and their association with other bacteria in endodontic infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92, 329–334.[CrossRef]
    [Google Scholar]
  16. Kakehashi, S., Stanley, H. R. & Fitzgerald, R. J. ( 1965; ). The effect of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Path 20, 340–349.[CrossRef]
    [Google Scholar]
  17. Kemp, P. F., Lee, S. & LaRoche, J. ( 1993; ). Estimating the growth rate of slowly growing bacteria from RNA content. Appl Environ Microbiol 59, 2594–2601.
    [Google Scholar]
  18. Kerekes, K. & Tronstad, L. ( 1979; ). Long-term results of endodontic treatment performed with a standardized technique. J Endod 5, 83–90.[CrossRef]
    [Google Scholar]
  19. Leys, E. J., Lyons, S. R., Moeschberger, M. L., Rumpf, R. W. & Griffen, A. L. ( 2002; ). Association of Bacteroides forsythus and a novel Bacteroides phylotype with periodontitis. J Clin Microbiol 40, 821–825.[CrossRef]
    [Google Scholar]
  20. Loy, A., Horn, M. & Wagner, M. ( 2003; ). ProbeBase – an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res 31, 514–516.[CrossRef]
    [Google Scholar]
  21. Manz, W., Amann, R., Szewzyk, R., Szewzyk, U., Stenstrøm, T.-A., Hutzler, P. & Schleifer, K.-H. ( 1995; ). In situ identification of Legionellaceae using 16S rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy. Microbiology 141, 29–39.[CrossRef]
    [Google Scholar]
  22. Moter, A. & Göbel, U. B. ( 2000; ). Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41, 85–112.[CrossRef]
    [Google Scholar]
  23. Moter, A., Leist, G., Rudolph, R., Schrank, K., Choi, B.-K., Wagner, M. & Göbel, U. B. ( 1998a; ). Fluorescence in situ hybridization shows spatial distribution of as yet uncultured treponemes in biopsies from digital dermatitis lesions. Microbiology 144, 2459–2467.[CrossRef]
    [Google Scholar]
  24. Moter, A., Hoenig, C., Choi, B.-K., Riep, B. & Göbel, U. B. ( 1998b; ). Molecular epidemiology of oral treponemes in periodontal disease. J Clin Microbiol 36, 1399–1403.
    [Google Scholar]
  25. Roças, I. N., Siqueira, J. F., Jr, Santos, K. R. & Coelho, A. M. ( 2001; ). ‘Red complex’ (Bacteroides forsythus, Porphyromonas gingivalis, and Treponema denticola) in endodontic infections: a molecular approach. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 91, 468–471.[CrossRef]
    [Google Scholar]
  26. Socransky, S. S., Haffajee, A. D., Cugini, A., Smith, C. & Kent, R. L., Jr ( 1998; ). Microbial complexes in subgingival plaque. J Clin Periodontol 25, 134–144.[CrossRef]
    [Google Scholar]
  27. Sunde, P. T., Olsen, I., Lind, P. O. & Tronstad, L. ( 2000a; ). Extraradicular infection: a methodological study. Endod Dent Traumatol 16, 84–90.[CrossRef]
    [Google Scholar]
  28. Sunde, P. T., Tronstad, L., Eribe, E. R., Lind, P. O. & Olsen, I. ( 2000b; ). Assessment of periradicular microbiota by DNA–DNA hybridization. Endod Dent Traumatol 16, 84–90.[CrossRef]
    [Google Scholar]
  29. Sunde, P. T., Olsen, I., Debelian, G. J. & Tronstad, L. ( 2002; ). Microbiota of periapical lesions refractory to endodontic therapy. J Endod 28, 304–310.[CrossRef]
    [Google Scholar]
  30. Sundqvist, G. ( 1976; ). Bacteriological studies of necrotic dental pulps. PhD thesis, University of Umeå, Sweden.
  31. Sundqvist, G. ( 1992; ). Associations between microbial species in dental root canal infections. Oral Microbiol Immunol 7, 257–262.[CrossRef]
    [Google Scholar]
  32. Trebesius, K., Leitritz, L., Adler, K., Schubert, S., Autenrieth, I. B. & Heesemann, J. ( 2000; ). Culture independent and rapid identification of bacterial pathogens in necrotising fasciitis and streptococcal toxic shock syndrome by fluorescence in situ hybridisation. Med Microbiol Immunol 188, 169–175.[CrossRef]
    [Google Scholar]
  33. Tronstad, L., Barnett, F., Riso, K. & Slots, J. ( 1987; ). Extraradicular endodontic infections. Endod Dent Traumatol 3, 86–90.[CrossRef]
    [Google Scholar]
  34. Tronstad, L., Cervone, F. & Barnett, F. ( 1990; ). Periapical bacterial plaque in teeth refractory to endodontic treatment. Endod Dent Traumatol 6, 73–77.[CrossRef]
    [Google Scholar]
  35. van Winkelhoff, A. J., Kippuw, N. & de Graaff, J. ( 1987; ). Cross-inhibition between black-pigmented Bacteroides species. J Dent Res 66, 1663–1667.[CrossRef]
    [Google Scholar]
  36. Wagner, M., Assmus, B., Hartmann, A., Hutzler, P. & Amann, R. ( 1994; ). In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy. J Microsc 176, 181–187.[CrossRef]
    [Google Scholar]
  37. Wallner, G., Amann, R. & Beisker, W. ( 1993; ). Optimizing fluorescent in situ hybridization of suspended cells with rRNA-targeted oligonucleotide probes for the flow cytometric identification of microorganisms. Cytometry 14, 136–143.[CrossRef]
    [Google Scholar]
  38. Wayman, B. E., Murata, S. M., Almeida, R. J. & Fowler, C. B. ( 1992; ). A bacteriological and histological evaluation of 58 periapical lesions. J Endod 18, 152–155.[CrossRef]
    [Google Scholar]
  39. Wecke, J., Kersten, T., Madela, K., Moter, A., Göbel, U. B., Friedmann, A. & Bernimoulin, J.-P. ( 2000; ). A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets. Sci Direct 191, 95–101.
    [Google Scholar]
  40. Willis, S. G., Smith, K. S., Dunn, V. L., Gapter, L. A., Riviere, K. H. & Riviere, G. R. ( 1999; ). Identification of seven treponeme species in health- and disease-associated dental plaque by nested PCR. J Clin Microbiol 37, 867–869.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26077-0
Loading
/content/journal/micro/10.1099/mic.0.26077-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error