1887

Abstract

The respiratory inhibitor cyanide stimulates growth of the ethanologenic bacterium , perhaps by diverting reducing equivalents from respiration to ethanol synthesis, thereby minimizing accumulation of toxic acetaldehyde. This study sought to identify cyanide-sensitive components of respiration. In aerobically grown, permeabilized cells, addition of 200 μM cyanide caused gradual inhibition of ADH II, the iron-containing alcohol dehydrogenase isoenzyme, which, in aerobic cultures, might be oxidizing ethanol and supplying NADH to the respiratory chain. In membrane preparations, NADH oxidase was inhibited more rapidly, but to a lesser extent, than ADH II. The time-course of inhibition of whole-cell respiration resembled that of NADH oxidase, yet the inhibition was almost complete, and was accompanied by an increase of intracellular NADH concentration. Cyanide did not significantly affect the activity of ADH I, the zinc-containing alcohol dehydrogenase isoenzyme. When an aerobic batch culture was grown in the presence of 200 μM cyanide, cyanide-resistant ADH II activity was observed, its appearance correlating with the onset of respiration. It is concluded that the membrane-associated respiratory chain, but not ADH II, is responsible for the whole-cell cyanide sensitivity, while the cyanide-resistant ADH II is needed for respiration in the presence of cyanide, and represents an adaptive response of to cyanide, analogous to the induction of alternative terminal oxidases in other bacteria.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26073-0
2003-07-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/7/mic1491739.html?itemId=/content/journal/micro/10.1099/mic.0.26073-0&mimeType=html&fmt=ahah

References

  1. Aldrich, H. C., McDowell, L., Barbosa, M. de F. S., Yomano, L. P., Scopes, R. K. & Ingram, L. O. ( 1992; ). Immunocytochemical localization of glycolytic and fermentative enzymes in Zymomonas mobilis. J Bacteriol 174, 4504–4508.
    [Google Scholar]
  2. Ashcroft, J. R. & Haddock, B. A. ( 1975; ). Synthesis of alternative membrane-bound redox carriers during aerobic growth of Escherichia coli in the presence of potassium cyanide. Biochem J 148, 349–352.
    [Google Scholar]
  3. Belaich, J. P. & Senez, J. C. ( 1965; ). Influence of aeration and pantothenate on growth yields of Zymomonas mobilis. J Bacteriol 89, 1195–1200.
    [Google Scholar]
  4. Bringer, S., Finn, R. K. & Sahm, H. ( 1984; ). Effect of oxygen on the metabolism of Zymomonas mobilis. Arch Microbiol 139, 376–381.[CrossRef]
    [Google Scholar]
  5. Kalnenieks, U., de Graaf, A. A., Bringer-Meyer, S. & Sahm, H. ( 1993; ). Oxidative phosphorylation in Zymomonas mobilis. Arch Microbiol 160, 74–79.[CrossRef]
    [Google Scholar]
  6. Kalnenieks, U., Galinina, N., Bringer-Meyer, S. & Poole, R. K. ( 1998; ). Membrane d-lactate oxidase in Zymomonas mobilis: evidence for a branched respiratory chain. FEMS Microbiol Lett 168, 91–97.
    [Google Scholar]
  7. Kalnenieks, U., Galinina, N., Toma, M. M. & Poole, R. K. ( 2000; ). Cyanide inhibits respiration yet stimulates aerobic growth of Zymomonas mobilis. Microbiology 146, 1259–1266.
    [Google Scholar]
  8. Kalnenieks, U., Galinina, N., Toma, M. & Marjutina, U. ( 2002; ). Ethanol cycle in an ethanologenic bacterium. FEBS Lett 522, 6–8.[CrossRef]
    [Google Scholar]
  9. Karp, M. T., Raunio, R. P. & Lövgren, T. N.-E. ( 1983; ). Simultaneous extraction and combined bioluminescent assay of NAD+ and NADH. Anal Biochem 128, 175–180.[CrossRef]
    [Google Scholar]
  10. Kinoshita, S., Kakizono, T., Kadota, K., Kumudeswar, D. & Taguchi, H. ( 1985; ). Purification of two alcohol dehydrogenases from Zymomonas mobilis and their properties. Appl Microbiol Biotechnol 22, 249–254.
    [Google Scholar]
  11. Kita, K., Konishi, K. & Anraku, Y. ( 1984; ). Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b 558d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J Biol Chem 259, 3375–3381.
    [Google Scholar]
  12. Knowles, C. J. ( 1976; ). Microorganisms and cyanide. Bacteriol Rev 40, 652–680.
    [Google Scholar]
  13. Mackenzie, K. F., Eddy, C. K. & Ingram, L. O. ( 1989; ). Modulation of alcohol dehydrogenase isoenzyme levels in Zymomonas mobilis by iron and zinc. J Bacteriol 171, 1063–1067.
    [Google Scholar]
  14. Markwell, M. A. K., Haas, S. M., Bieber, L. L. & Talbert, N. E. ( 1978; ). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87, 206–210.[CrossRef]
    [Google Scholar]
  15. Martinez Arias, W. & Pettersson, G. ( 1997; ). Mechanism of NADH transfer between alcohol dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem 250, 158–162.[CrossRef]
    [Google Scholar]
  16. Neale, A. D., Scopes, R. K., Kelly, J. M. & Wettenhall, R. E. H. ( 1986; ). The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterisation and physiological roles. Eur J Biochem 154, 119–124.[CrossRef]
    [Google Scholar]
  17. Osman, Y. A., Conway, T., Bonetti, S. J. & Ingram, L. O. ( 1987; ). Glycolytic flux in Zymomonas mobilis: enzyme and metabolite levels during batch fermentation. J Bacteriol 169, 3726–3736.
    [Google Scholar]
  18. Pankova, L. M., Shvinka, Y. E., Beker, M. E. & Slava, E. E. ( 1985; ). Effect of aeration on Zymomonas mobilis metabolism. Mikrobiologiya 54, 141–145.
    [Google Scholar]
  19. Srivastava, D. K. & Bernhard, S. A. ( 1984; ). Direct transfer of reduced nicotinamide adenine dinucleotide from glyceraldehyde-3-phosphate dehydrogenase to liver alcohol dehydrogenase. Biochemistry 23, 4538–4545.[CrossRef]
    [Google Scholar]
  20. Strohdeicher, M., Neuß, B., Bringer-Meyer, S. & Sahm, H. ( 1990; ). Electron transport chain of Zymomonas mobilis. Interaction with the membrane-bound glucose dehydrogenase and identification of ubiquinone 10. Arch Microbiol 154, 536–543.
    [Google Scholar]
  21. Wills, C. ( 1976; ). Production of yeast alcohol dehydrogenase isoenzymes by selection. Nature 261, 26–29.[CrossRef]
    [Google Scholar]
  22. Wills, C., Kratofil, P., Londo, D. & Martin, T. ( 1981; ). Characterization of the two alcohol dehydrogenases of Zymomonas mobilis. Arch Biochem Biophys 210, 775–785.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26073-0
Loading
/content/journal/micro/10.1099/mic.0.26073-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error