1887

Abstract

An open reading frame (ORF) that would encode a putative antiterminator protein (LicT) of the BglG family was identified in the genomic DNA sequence of . A DNA sequence that would encode a potential ribonucleic antiterminator (RAT) site in the mRNA at which the putative antitermination protein LicT would bind was located immediately downstream from this ORF. These putative antitermination components are upstream of a glucose-independent -glucoside-utilization system that is responsible for aesculin utilization by NG8 in the presence of glucose. It was hypothesized that these putative regulatory components were an important mechanism that was involved with the controlled expression of the locus. A strain of containing a  : : Ω-Kan2 insertional mutation was created. This strain could not hydrolyse aesculin in the presence of glucose. The transcriptional activity associated with other genes from the regulon was determined in the  : : Ω-Kan2 genetic background using transcriptional fusions and -galactosidase assays to determine the effect of LicT on these loci. The LicT protein had no significant effect on the expression of the promoter, a regulator of the locus. However, it is essential for the optimal expression of . These data correlate with the phenotype observed on aesculin plates for the wild-type strain NG8 and the  : : Ω-Kan2 strain. Thus, the glucose-independent -glucoside-specific phosphotransferase system (PTS) regulon in relies on LicT for BglP expression and, in turn, aesculin transport in the presence of glucose. Interestingly, LicT also seems to negatively regulate the expression of the promoter region. In addition, the presence of the gene has been shown to be able to activate a cryptic -glucoside-specific operon found in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26067-0
2003-05-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491333.html?itemId=/content/journal/micro/10.1099/mic.0.26067-0&mimeType=html&fmt=ahah

References

  1. Ajdic D., McShan W. M., McLaughlin R. E. & 16 other authors; 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439
    [Google Scholar]
  2. Alting-Mees M. A., Short J. M. 1989; pBluescript II: gene mapping vectors. Nucleic Acids Res 17:9494
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 2001 Current Protocols in Molecular Biology Edited by Chanda V. B. New York: Wiley;
    [Google Scholar]
  4. Bardowski J., Ehrlich S. D., Chopin A. 1994; BglR protein, which belongs to the BglG family of transcriptional antiterminators, is involved in β -glucoside utilization in Lactococcus lactis . J Bacteriol 176:5681–5685
    [Google Scholar]
  5. Brehm K., Ripio M. T., Kreft J., Vasquez-Boland J. A. 1999; The bvr locus of Listeria monocytogenes mediates virulence gene repression by β -glucosides. J Bacteriol 181:5024–5032
    [Google Scholar]
  6. Brown G. D., Thomson J. A. 1998; Isolation and characterisation of an aryl- β -d-glucoside uptake and utilisation system ( abg ) from the gram-positive ruminal Clostridium species C. longisporum . Mol Gen Genet 257:213–218
    [Google Scholar]
  7. Chang A. C., Cohen S. N. 1978; Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156
    [Google Scholar]
  8. Cote C. K., Honeyman A. L. 2002; The transcriptional regulation of the Streptococcus mutans bgl regulon. Oral Microbiol Immunol 17:1–8
    [Google Scholar]
  9. Cote C. K., Cvitkovitch D., Bleiweis A. S., Honeyman A. L. 2000; A novel β -glucoside-specific PTS locus from Streptococcus mutans that is not inhibited by glucose. Microbiology 146:1555–1563
    [Google Scholar]
  10. Cvitkovich D. G., Gutierrez J. A., Crowley P. J., Wojciechowski L., Hillman J. D., Bleiweis A. S. 1998; Tn 917 transposon mutagenesis and marker rescue of interrupted genes of Streptococcus mutans . Methods Cell Sci 20:1–12
    [Google Scholar]
  11. De Vos W. M. 1987; Gene cloning and expression in lactic streptococci. FEMS Microbiol Rev 46:281–295
    [Google Scholar]
  12. Debarbouille M., Arnaud M., Fouet A., Klier A., Rapoport G. 1990; The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators. J Bacteriol 172:3966–3973
    [Google Scholar]
  13. Dower W. J. 1990; Electroporation of bacteria: a general approach to genetic transformation. In Genetic Engineering – Principles and Methods pp  275–296 New York: Plenum;
    [Google Scholar]
  14. el Hassouni M., Chippaux M., Barras F. 1990; Analysis of the Erwinia chrysanthemi arb genes, which mediate metabolism of aromatic β -glucosides. J Bacteriol 172:6261–6267
    [Google Scholar]
  15. el Hassouni M., Henrissat B., Chippaux M., Barras F. 1992; Nucleotide sequences of the arb genes, which control β -glucoside utilization in Erwinia chrysanthemi : comparison with the Escherichia coli bgl operon and evidence for a new β -glycohydrolase family including enzymes from eubacteria, archaebacteria, and humans. J Bacteriol 174:765–777
    [Google Scholar]
  16. Franz C. M., Worobo R. W., Quadri L. E., Schillinger U., Holzapfel W. H., Vederas J. C., Stiles M. E. 1999; Atypical genetic locus associated with constitutive production of enterocin B by Enterococcus faecium BFE 900. Appl Environ Microbiol 65:2170–2178
    [Google Scholar]
  17. Hall B. G., Xu L. 1992; Nucleotide sequence, function, activation, and evolution of the cryptic asc operon of Escherichia coli K12. Mol Biol Evol 9:688–706
    [Google Scholar]
  18. Hogema B. M., Arents J. C., Bader R., Eijkemans K., Inada T., Aiba H., Postma P. W. 1998a; Inducer exclusion by glucose 6-phosphate in Escherichia coli . Mol Microbiol 28:755–765
    [Google Scholar]
  19. Hogema B. M., Arents J. C., Bader R., Eijkemans K., Yoshida H., Takahashi H., Aiba H., Postma P. W. 1998b; Inducer exclusion in Escherichia coli by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIAGlc . Mol Microbiol 30:487–498
    [Google Scholar]
  20. Honeyman A. L., Cote C. K., Curtiss R. III 2002; Construction of transcriptional and translational lacZ gene reporter plasmids for use in Streptococcus mutans . J Microbiol Methods 49:163–171
    [Google Scholar]
  21. Le Coq D., Lindner C., Kruger S., Steinmetz M., Stulke J. 1995; New β -glucoside ( bgl ) genes in Bacillus subtilis : the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog. J Bacteriol 177:1527–1535
    [Google Scholar]
  22. Li Y., Ferenci T. 1996; The Bacillus stearothermophilus NUB36 surA gene encodes a thermophilic sucrase related to Bacillus subtilis SacA. Microbiology 142:1651–1657
    [Google Scholar]
  23. Macrina F. L., Tobian J. A., Jones K. R., Evans R. P., Clewell D. B. 1982; A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis . Gene 19:345–353
    [Google Scholar]
  24. Manoil C., Beckwith J. 1985; Tn phoA : a transposon probe for protein export signals. Proc Natl Acad Sci U S A 82:8129–8133
    [Google Scholar]
  25. Marasco R., Salatiello I., De Felice M., Sacco M. 2000; A physical and functional analysis of the newly-identified bglGPT operon of Lactobacillus plantarum . FEMS Microbiol Lett 186:269–273
    [Google Scholar]
  26. Moran C. P. Jr, Lang N., LeGrice S. F., Lee G., Stephens M., Sonenshein A. L., Pero J., Losick R. 1982; Nucleotide sequences that signal the initiation of transcription and translation in Bacillus subtilis . Mol Gen Genet 186:339–346
    [Google Scholar]
  27. Murchison H. H., Barrett J. F., Cardineau G. A., Curtiss R. III 1986; Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect Immun 54:273–282
    [Google Scholar]
  28. Perez-Casal J., Caparon M. G., Scott J. R. 1991; Mry, a trans -acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J Bacteriol 173:2617–2624
    [Google Scholar]
  29. Postma P. W., Lengeler J. W. 1985; Phosphoenolpyruvate : carbohydrate phosphotransferase system of bacteria. Microbiol Rev 49:232–269
    [Google Scholar]
  30. Reynolds A. E., Felton J., Wright A. 1981; Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature 293:625–629
    [Google Scholar]
  31. Rutberg B. 1997; Antitermination of transcription of catabolic operons. Mol Microbiol 23:413–421
    [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Schnetz K., Toloczyki C., Rak B. 1987; β -Glucoside ( bgl ) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol 169:2579–2590
    [Google Scholar]
  34. Schnetz K., Stulke J., Gertz S., Kruger S., Krieg M., Hecker M., Rak B. 1996; LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol 178:1971–1979
    [Google Scholar]
  35. Tangney M., Mitchell W. J. 2000; Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum . J Mol Microbiol Biotechnol 2:71–80
    [Google Scholar]
  36. Tobisch S., Glaser P., Kruger S., Hecker M. 1997; Identification and characterization of a new β -glucoside utilization system in Bacillus subtilis . J Bacteriol 179:496–506
    [Google Scholar]
  37. van de Rijn I., Kessler R. E. 1980; Growth characteristics of group A streptococci in a new chemically defined medium. Infect Immun 27:444–448
    [Google Scholar]
  38. Yoshida K., Shindo K., Sano H., Seki S., Fujimura M., Yanai N., Miwa Y., Fujita Y. 1996; Sequencing of a 65 kb region of the Bacillus subtilis genome containing the lic and cel loci, and creation of a 177 kb contig covering the gnt–sacXY region. Microbiology 142:3113–3123
    [Google Scholar]
  39. Zukowski M. M., Miller L., Cosgwell P., Chen K., Aymerich S., Steinmetz M. 1990; Nucleotide sequence of the sacS locus of Bacillus subtilis reveals the presence of two regulatory genes. Gene 90:153–155
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26067-0
Loading
/content/journal/micro/10.1099/mic.0.26067-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error