1887

Abstract

A previous investigation using the Fur titration assay system showed that possesses a gene encoding a protein homologous to IutA, the outer-membrane receptor for ferric aerobactin in . In this study, a 5·6 kb DNA region from the WP1 genome was cloned and two entire genes, and homologues, were identified which are absent from genomic sequences. The IutA and AlcD proteins share 43 % identity with the IutA protein and 24 % identity with the AlcD protein of unknown function, respectively. Primer extension analysis revealed that the gene is transcribed in response to low-iron availability from a putative promoter overlapped with a sequence resembling a consensus Fur-binding sequence. In agreement with the above finding, effectively utilized exogenously supplied aerobactin for growth under iron-limiting conditions. Moreover, insertional inactivation of impaired growth in the presence of aerobactin and incapacitated the outer-membrane fraction from iron-deficient cells for binding Fe-labelled aerobactin. These results indicate that the homologue encodes an outer-membrane protein which functions as the receptor for ferric aerobactin. Southern blot analysis revealed that the homologues are widely distributed in clinical and environmental isolates of . However, additional genes required for ferric aerobactin transport across the inner membrane remain to be clarified.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26066-0
2003-05-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/5/mic1491217.html?itemId=/content/journal/micro/10.1099/mic.0.26066-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Madden, T. I., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  2. Aso, H., Miyoshi, S., Nakao, H., Okamoto, K. & Yamamoto, S. ( 2002; ). Induction of an outer membrane protein of 78 kDa in Vibrio vulnificus cultured in the presence of desferrioxamine B under iron-limiting conditions. FEMS Microbiol Lett 212, 65–70.[CrossRef]
    [Google Scholar]
  3. Baumann, P., Furniss, A. L. & Lee, J. V. ( 1984; ). Genus I. Vibrio Pacini 1854, 411AL, In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 518–538. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  4. Bäumler, A. & Hantke, K. ( 1992; ). Ferrioxamine uptake in Yersinia enterocolitica: characterization of the receptor protein FoxA. Mol Microbiol 6, 1309–1321.[CrossRef]
    [Google Scholar]
  5. Braun, V. & Hantke, K. ( 1991; ). Genetics of bacterial iron transport. In Handbook of Microbial Iron Chelates, pp. 107–138. Edited by G. Winkelmann. Boca Raton, FL: CRC Press.
  6. Braun, V., Hantke, K. & Köster, W. ( 1998; ). Bacterial iron transport: mechanisms, genetics, and regulation. Met Ions Biol Syst 35, 67–145.
    [Google Scholar]
  7. Calderwood, S. B. & Mekalanos, J. J. ( 1988; ). Confirmation of the Fur operator site by insertion of a synthetic oligonucleotide into an operon fusion plasmid. J Bacteriol 170, 1015–1017.
    [Google Scholar]
  8. Crosa, J. H. ( 1999; ). Molecular genetics of iron transport as a component of bacterial virulence. In Iron and Infection, 2nd edn, pp. 255–288. Edited by J. J. Bullen & E. Griffiths. New York: Wiley.
  9. de Lorenzo, V. & Marinez, J. L. ( 1988; ). Aerobactin production as a virulence factor: a re-evaluation. Eur J Clin Microbiol Infect Dis 7, 621–629.[CrossRef]
    [Google Scholar]
  10. Drechsel, H. & Winkelman, G. ( 1997; ). Iron chelation and siderophores. In Transition Metals in Microbial Metabolism, pp. 1–49. Edited by G. Winkelmann & C. J. Carrano. Amsterdam: Harwood Academic.
  11. Funahashi, T., Fujiwara, C., Okada, M., Miyoshi, S., Shinoda, S., Narimatsu, S. & Yamamoto, S. ( 2000; ). Characterization of Vibrio parahaemolyticus manganese-resistant mutants in reference to the function of the ferric uptake regulatory protein. Microbiol Immunol 44, 963–970.[CrossRef]
    [Google Scholar]
  12. Funahashi, T., Moriya, K., Uemura, S., Miyoshi, S., Shinoda, S., Narimatsu, S. & Yamamoto, S. ( 2002; ). Identification and characterization of pvuA, a gene encoding the ferric vibrioferrin receptor protein in Vibrio parahaemolyticus. J Bacteriol 184, 936–946.[CrossRef]
    [Google Scholar]
  13. Gibson, F. & Magrath, D. L. ( 1969; ). The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-1. Biochim Biophys Acta 192, 175–184.[CrossRef]
    [Google Scholar]
  14. Griffiths, E. ( 1999; ). Iron in biological systems. In Iron and Infection, 2nd edn, pp. 1–26. Edited by J. J. Bullen & E. Griffiths. New York: Wiley.
  15. Guerinot, M. L. ( 1994; ). Microbial iron transport. Annu Rev Microbiol 48, 743–772.[CrossRef]
    [Google Scholar]
  16. Hantke, K. ( 1981; ). Regulation of ferric transport in Escherichia coli K-12: isolation of a constitutive mutant. Mol Gen Genet 182, 288–294.[CrossRef]
    [Google Scholar]
  17. Hawley, D. K. & McClure, W. R. ( 1983; ). Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11, 2237–2255.[CrossRef]
    [Google Scholar]
  18. Haygood, M. G., Holt, P. D. & Butler, A. ( 1993; ). Aerobactin production by a planktonic marine Vibrio sp. Limnol Oceanogr 38, 1091–1097.[CrossRef]
    [Google Scholar]
  19. Krone, W. J. A., Stegehuis, F., Koningstein, G., van Doorn, C., Roosendaal, B., de Graaf, F. K. & Oudega, B. ( 1987; ). Characterization of the pColV-K30 encoded cloacin DF13/aerobactin outer membrane receptor protein of Escherichia coli; isolation and purification of the protein and analysis of its nucleotide sequence and primary structure. FEMS Microbiol Lett 26, 153–161.
    [Google Scholar]
  20. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  21. Loper, J. E. & Henkels, M. D. ( 1999; ). Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol 65, 5357–5363.
    [Google Scholar]
  22. Meyer, J. M. ( 1992; ). Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: possible involvement of porin OprF in iron translocation. J Gen Microbiol 138, 951–958.[CrossRef]
    [Google Scholar]
  23. Miller, V. L. & Mekalanos, J. J. ( 1988; ). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170, 2575–2583.
    [Google Scholar]
  24. Moss, J. E., Cardozo, T. J., Zychlinsky, A. & Groisman, E. A. ( 1999; ). The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Mol Microbiol 33, 74–83.[CrossRef]
    [Google Scholar]
  25. Murakami, K., Ohta, S., Fuse, H., Takimura, O., Kamimura, K. & Yamaoka, Y. ( 1995; ). Vibrio species isolated from coastal ocean produces aerobactin. Microbios 84, 231–238.
    [Google Scholar]
  26. Murakami, K., Fuse, H., Takimura, O., Inoue, H. & Yamaoka, Y. ( 2000; ). Cloning and characterization of the iutA gene which encodes ferric aerobactin receptor from marine Vibrio species. Microbios 101, 137–146.
    [Google Scholar]
  27. Nishibuchi, M., Kumagai, K. & Kaper, J. B. ( 1991; ). Contribution of the tdh1 gene of Kanagawa phenomenon-positive Vibrio parahaemolyticus to production of extracellular thermostable direct hemolysin. Microb Pathog 11, 453–460.[CrossRef]
    [Google Scholar]
  28. Okujo, N. & Yamamoto, S. ( 1994; ). Identification of the siderophore from Vibrio hollisae and Vibrio mimicus as aerobactin. FEMS Microbiol Lett 118, 187–192.[CrossRef]
    [Google Scholar]
  29. Payne, S. M. ( 1988; ). Iron and virulence in the family Enterobacteriaceae. Crit Rev Microbiol 16, 81–111.[CrossRef]
    [Google Scholar]
  30. Poole, K., Young, L. & Neshat, S. ( 1990; ). Enterobactin-mediated iron transport in Pseudomonas aeruginosa. J Bacteriol 172, 6991–6996.
    [Google Scholar]
  31. Pradel, E., Guiso, N. & Locht, C. ( 1998; ). Identification of AlcR, an AraC-type regulator of alcaligin siderophore synthesis in Bordetella bronchiseptica and Bordetella pertussis. J Bacteriol 180, 871–880.
    [Google Scholar]
  32. Purdy, G. E. & Payne, S. M. ( 2001; ). The SHI-3 iron transport island of Shigella boydii 0-1392 carries the genes for aerobactin synthesis and transport. J Bacteriol 183, 4176–4182.[CrossRef]
    [Google Scholar]
  33. Russell, L. M. & Holmes, R. K. ( 1985; ). Highly toxinogenic but avirulent Park–Williams 8 strain of Corynebacterium diphtheriae does not produce siderophore. Infect Immun 47, 575–578.
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  35. Sebulsky, M. T., Hohnstein, D., Hunter, M. D. & Heinrichs, D. E. ( 2000; ). Identification and characterization of a membrane permease involved in iron-hydroxamate transport in Staphylococcus aureus. J Bacteriol 182, 4394–4400.[CrossRef]
    [Google Scholar]
  36. Shine, J. & Dalgarno, L. ( 1974; ). The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding site. Proc Natl Acad Sci U S A 71, 1342–1346.[CrossRef]
    [Google Scholar]
  37. Six, S., Andrews, S. C., Unden, G. & Guest, J. R. ( 1994; ). Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). J Bacteriol 176, 6470–6478.
    [Google Scholar]
  38. Stojiljkovic, I., Baumler, A. J. & Hantke, K. ( 1994; ). Fur regulon in gram-negative bacteria. Identification and characterization of new Escherichia coli iron-regulated genes by a Fur titration assay. J Mol Biol 236, 531–545.[CrossRef]
    [Google Scholar]
  39. Struyvé, M., Moons, M. & Tommassen, J. ( 1991; ). Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 218, 141–148.[CrossRef]
    [Google Scholar]
  40. Vokes, S. A., Reever, S. A., Torres, A. G. & Payne, S. M. ( 1999; ). The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol Microbiol 33, 63–73.[CrossRef]
    [Google Scholar]
  41. von Heijne, G. ( 1983; ). Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem 133, 17–21.[CrossRef]
    [Google Scholar]
  42. West, S. E. H. & Sparling, P. F. ( 1987; ). Aerobactin utilization by Neisseria gonorrhoeae and cloning of a genomic DNA fragment that complements Escherichia coli fhuB mutations. J Bacteriol 169, 3414–3421.
    [Google Scholar]
  43. Yamamoto, S., Okujo, N., Matsuura, S., Fujiwara, I., Fujita, Y. & Shinoda, S. ( 1994a; ). Siderophore-mediated utilization of iron bound to transferrin by Vibrio parahaemolyticus. Microbiol Immunol 38, 687–693.[CrossRef]
    [Google Scholar]
  44. Yamamoto, S., Okujo, N., Yoshida, T., Matsuura, S. & Shinoda, S. ( 1994b; ). Structure and iron transport activity of vibrioferrin, a new siderophore of Vibrio parahaemolyticus. J Biochem 115, 868–874.
    [Google Scholar]
  45. Yamamoto, S., Hara, Y., Tomochika, K. & Shinoda, S. ( 1995; ). Utilization of hemin and hemoglobin as iron sources by Vibrio parahaemolyticus and identification of an iron-repressible hemin-binding protein. FEMS Microbiol Lett 128, 195–200.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26066-0
Loading
/content/journal/micro/10.1099/mic.0.26066-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error