1887

Abstract

Here, the codon usage patterns of two species ( and ) are reported. These prokaryotes are characterized by a strong mutational bias towards A+T, a striking excess of coding sequences and purine-rich leading strands of replication, strong GC-skews and a high frequency of genomic rearrangements. As expected, it was found that the mutational bias dominates codon usage but there is some variation of synonymous codon choices among genes in the two species. This variation was investigated using a multivariate statistical approach. In the two species, two major trends were detected. One was related to the location of the sequences in the leading or lagging strand of replication, and the other was associated with the preferential use of putatively translational optimal codons in heavily expressed genes. Analyses of the estimated number of synonymous and non-synonymous substitutions among orthologous genes permit us to postulate that optimal codons might be selected not only for speed but also for accuracy during translation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26063-0
2003-04-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/4/mic149855.html?itemId=/content/journal/micro/10.1099/mic.0.26063-0&mimeType=html&fmt=ahah

References

  1. Akashi H., Eyre-Walker A.. 1998; Translational selection and molecular evolution. Curr Opin Genet Dev8:688–693
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  3. Bernardi G., Bernardi G.. 1986; Compositional constraints and genome evolution. J Mol Evol24:1–11
    [Google Scholar]
  4. Bulmer M.. 1991; The selection-mutation-drift theory of synonymous codon usage. Genetics129:897–907
    [Google Scholar]
  5. de Miranda A. B., Alvarez-Valin F., Jabbari K., Degrave W. M., Bernardi G.. 2000; Gene expression, amino acid conservation, and hydrophobicity are the main factors shaping codon preferences in Mycobacterium tuberculosis and Mycobacterium leprae . J Mol Evol50:45–55
    [Google Scholar]
  6. Delcher A. L., Phillippy A., Carlton J., Salzberg S. L.. 2002; Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res30:2478–2483
    [Google Scholar]
  7. Dong H., Nilsson L., Kurland C. G.. 1996; Co-variation of tRNA abundance and codon usage in Escherichia coli at different growth rates. J Mol Biol260:649–663
    [Google Scholar]
  8. Garcia-Vallve S., Romeu A., Palau J.. 2000; Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol Biol Evol17:352–361
    [Google Scholar]
  9. Goncalves I., Robinson M., Perriere G., Mouchiroud D.. 1999; jadis: computing distances between nucleic acid sequences. Bioinformatics15:424–425
    [Google Scholar]
  10. Gouy M., Gautier C.. 1982; Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Res10:7055–7074
    [Google Scholar]
  11. Grantham R., Gautier C., Gouy M., Jacobzone M., Mercier R.. 1981; Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res9:r43–74
    [Google Scholar]
  12. Greenacre M.. 1984; Theory and Applications of Correspondence Analysis London: Academic;
    [Google Scholar]
  13. Grocock R. J., Sharp P. M.. 2002; Synonymous codon usage in Pseudomonas aeruginosa PAO1. Gene289:131–139
    [Google Scholar]
  14. Ikemura T.. 1981; Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol151:389–409
    [Google Scholar]
  15. Kanaya S., Yamada Y., Kudo Y., Ikemura T.. 1999; Studies of codon usage and tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis tRNAs: gene expression level and species-specific diversity of codon usage based on multivariate analysis. Gene238:143–155
    [Google Scholar]
  16. Karlin S.. 2001; Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial genomes. Trends Microbiol9:335–343
    [Google Scholar]
  17. Kerr A. R., Peden J. F., Sharp P. M.. 1997; Systematic base composition variation around the genome of Mycoplasma genitalium , but not Mycoplasma pneumoniae . Mol Microbiol25:1177–1179
    [Google Scholar]
  18. Lafay B., Lloyd A. T., McLean M. J., Devine K. M., Sharp P. M., Wolfe K. H.. 1999; Proteome composition and codon usage in spirochaetes: species-specific and DNA strand-specific mutational biases. Nucleic Acids Res27:1642–1649
    [Google Scholar]
  19. Lafay B., Atherton J. C., Sharp P. M.. 2000; Absence of translationally selected synonymous codon usage bias in Helicobacter pylori . Microbiology146:851–860
    [Google Scholar]
  20. Li W. H.. 1993; Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol36:96–99
    [Google Scholar]
  21. Lobry J. R.. 1996; Origin of replication of Mycoplasma genitalium . Science272:745–746
    [Google Scholar]
  22. McInerney J. O.. 1997; Prokaryotic genome evolution as assessed by multivariate analysis of codon usage patterns. Microb Comp Genomics2:1–10
    [Google Scholar]
  23. McInerney J. O.. 1998; Replicational and transcriptional selection on codon usage in Borrelia burgdorferi . Proc Natl Acad Sci U S A95:10698–10703
    [Google Scholar]
  24. Musto H., Romero H., Zavala A., Jabbari K., Bernardi G.. 1999; Synonymous codon choices in the extremely GC-poor genome of Plasmodium falciparum : compositional constraints and translational selection. J Mol Evol49:27–35
    [Google Scholar]
  25. Muto A., Osawa S.. 1987; The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci U S A84:166–169
    [Google Scholar]
  26. Nei M., Gojobori T.. 1986; Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol3:418–426
    [Google Scholar]
  27. Nolling J., Breton G., Omelchenko M. V.. 16 other authors 2001; Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum . J Bacteriol183:4823–4838
    [Google Scholar]
  28. Percudani R., Pavesi A., Ottonello S.. 1997; Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae . J Mol Biol268:322–330
    [Google Scholar]
  29. Post L. E., Nomura M.. 1979; Nucleotide sequence of the intercistronic region preceding the gene for RNA polymerase subunit alpha in Escherichia coli . J Biol Chem254:10604–10606
    [Google Scholar]
  30. Romero H., Zavala A., Musto H.. 2000a; Codon usage in Chlamydia trachomatis is the result of strand-specific mutational biases and a complex pattern of selective forces. Nucleic Acids Res28:2084–2090
    [Google Scholar]
  31. Romero H., Zavala A., Musto H.. 2000b; Compositional pressure and translational selection determine codon usage in the extremely GC-poor unicellular eukaryote Entamoeba histolytica . Gene242:307–311
    [Google Scholar]
  32. Sharp P. M., Li W. H.. 1986; An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol24:28–38
    [Google Scholar]
  33. Sharp P. M., Li W. H.. 1987; The codon Adaptation Index: a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res15:1281–1295
    [Google Scholar]
  34. Sharp P. M., Tuohy T. M., Mosurski K. R.. 1986; Codon usage in yeast: cluster analysis clearly differentiates highly and lowly expressed genes. Nucleic Acids Res14:5125–5143
    [Google Scholar]
  35. Shimizu T., Ohtani K., Hirakawa H.. 7 other authors 2002; Complete genome sequence of Clostridium perfringens , an anaerobic flesh-eater. Proc Natl Acad Sci U S A99:996–1001
    [Google Scholar]
  36. Sueoka N.. 1962; On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci U S A48:582–592
    [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  38. Zavala A., Naya H., Romero H., Musto H.. 2002; Trends in codon and amino acid usage in Thermotoga maritima . J Mol Evol54:563–568
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26063-0
Loading
/content/journal/micro/10.1099/mic.0.26063-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error