1887

Abstract

A catabolic system involved in the utilization of -glucosides in R and its spontaneous mutant variants allowing uptake of cellobiose were investigated. The system comprises a -glucoside-specific Enzyme IIBCA component (gene ) of the phosphotransferase system (PTS), a phospho--glucosidase () and an antiterminator protein () from the BglG/SacY family of transcription regulators. The results suggest that transcription antitermination is involved in control of induction and carbon catabolite repression of genes, which presumably form an operon. Functional analysis of the and products revealed that they are simultaneously required for uptake, phosphorylation and breakdown of methyl -glucoside, salicin and arbutin. Although cellobiose is not normally a substrate for BglF permease and is not utilized by R, cellobiose-utilizing mutants can be obtained. The mutation responsible was mapped to the locus and sequenced, and point mutations were found in codon 317 of . These led to substitutions V317A and/or V317M near the putative PTS active-site H313 in the membrane-spanning IIC domain of BglF and allowed BglF to act on cellobiose. Such results strengthen the evidence that the IIC domains can be regarded as selectivity filters of the PTS.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26053-0
2003-06-01
2020-08-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/6/mic1491569.html?itemId=/content/journal/micro/10.1099/mic.0.26053-0&mimeType=html&fmt=ahah

References

  1. Begley G. S., Warner K. A., Arents J. C., Postma P. W., Jacobson G. R.. 1996; Isolation and characterization of a mutation that alters the substrate specificity of the Escherichia coli glucose permease. J Bacteriol178:940–942
    [Google Scholar]
  2. Brehm K., Ripio M. T., Kreft J., Vazquez-Boland J. A.. 1999; The bvr locus of Listeria monocytogenes mediates virulence gene repression by β -glucosides. J Bacteriol181:5024–5032
    [Google Scholar]
  3. Brown G. D., Thomson J. A.. 1998; Isolation and characterisation of an aryl- β -d-glucoside uptake and utilization system ( abg) from the gram-positive ruminal Clostridium species C. longisporum . Mol Gen Genet257:213–218
    [Google Scholar]
  4. Buhr A., Daniels G. A., Erni B.. 1992; The glucose transporter of Escherichia coli . Mutants with impaired translocation activity that retains phosphorylation activity. J Biol Chem267:3847–3851
    [Google Scholar]
  5. Cote C. K., Cvitkovich D., Bleiweis A. S., Honeyman A. L.. 2000; A novel β -glucoside-specific PTS locus from Streptococcus mutans that is not inhibited by glucose. Microbiology146:1555–1563
    [Google Scholar]
  6. Crutz A. M., Steinmetz M.. 1992; Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signaling system. J Bacteriol174:6087–6095
    [Google Scholar]
  7. Dominguez H., Rollin C., Guyonvarch A., Guerquin-Kern J. L., Cocaign-Bousquet M., Lindley N. D.. 1998; Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem254:96–102
    [Google Scholar]
  8. el Hassouni M., Henrissat B., Chippaux M., Barras F.. 1992; Nucleotide sequence of the arb genes, which control β -glucoside utilization in Erwinia chrysanthemi : comparison with the Escherichia coli bgl operon and evidence for a new β -glycohydrolase family including enzymes from Eubacteria, Archebacteria, and humans. J Bacteriol174:765–777
    [Google Scholar]
  9. Elkins M. F., Earhart C. F.. 1989; Nucleotide sequence and regulation of the Escherichia coli gene for ferrienterobactin transport protein FepB. J Bacteriol171:5443–5451
    [Google Scholar]
  10. Görke B., Rak B.. 1999; Catabolite control of Escherichia coli regulatory protein BglG activity by antagonistically acting phosphorylations. EMBO J18:3370–3379
    [Google Scholar]
  11. Goyal D., Wachi M., Kijima N., Kobayashi M., Yukawa H., Nagai K.. 1996; A cryptic plasmid pBL1 from Brevibacterium lactofermentum causes growth inhibition and filamentation in Escherichia coli . Plasmid36:62–66
    [Google Scholar]
  12. Hall B. G., Xu L.. 1992; Nucleotide sequence, function, activation and evolution of the cryptic asc operon of Escherichia coli K12. Mol Biol Evol9:688–706
    [Google Scholar]
  13. Innis M. A., Gelfand D. H., Sninski J. J., White T. J.. 1990; PCR Protocols, a Guide to Methods and Applications San Diego, CA: Academic Press;
    [Google Scholar]
  14. Kinoshita S.. 1985; Glutamic acid bacteria. In Biology of Industrial Microorganisms pp 115–146 Edited by Demain A. L., Solomon N. A.. London: Benjamin Cummings;
    [Google Scholar]
  15. Kornberg H. L., Lambourne L. T., Sproul A. A.. 2000; Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli . Proc Natl Acad Sci U S A97:1808–1812
    [Google Scholar]
  16. Kotrba P., Inui M., Yukawa H.. 2001; The ptsI encoding Enzyme I of the phosphotransferase system of Corynebacterium glutamicum . Biochem Biophys Res Commun289:1307–1313
    [Google Scholar]
  17. Kricker M., Hall B. G.. 1987; Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K12. Genetics115:419–429
    [Google Scholar]
  18. Krüger S., Hecker M.. 1995; Regulation of the putative bglPH operon for aryl- β -glucoside utilization in Bacillus subtilis . J Bacteriol177:5590–5597
    [Google Scholar]
  19. Kurusu Y., Kainuma M., Inui M., Satoh Y., Yukawa H.. 1990; Electroporation-transformation system for coryneform bacteria by auxotrophic complementation. Agric Biol Chem54:443–447
    [Google Scholar]
  20. Lai X., Ingram L. O.. 1993; Cloning and sequencing of a cellobiose operon from Bacillus stearothermophilus XL-65-6 and functional expression in Escherichia coli . J Bacteriol175:6441–6450
    [Google Scholar]
  21. Lai X., Davis F. C., Hespell R. B., Ingram L. O.. 1997; Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides. Appl Environ Microbiol63:355–363
    [Google Scholar]
  22. Lee J.-K., Sung M.-H., Yoon K.-H., Yu J.-H., Oh T.-K.. 1994; Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence. FEMS Microbiol Lett119:137–146
    [Google Scholar]
  23. Lessard P. A., Guillouet S., Willis L. B., Sinskey A. J.. 1999; Corynebacteria, Brevibacteria. In Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation pp 729–740 Edited by Flickinger M. C., Drew S. W. New York: Wiley;
    [Google Scholar]
  24. Malin G. M., Bourd G. I.. 1991; Phosphotransferase-dependent glucose transport in Corynebacterium glutamicum . J Appl Bacteriol71:517–523
    [Google Scholar]
  25. Marasco R., Salatiello I., De Felice M., Sacco M.. 2000; A physical and functional analysis of the newly-identified bglGPT operon of Lactobacillus plantarum . FEMS Microbiol Lett186:269–273
    [Google Scholar]
  26. Mori M., Shiio I.. 1987; Phosphoenolpyruvate : sugar phosphotransferase systems and sugar metabolism in Brevibacterium flavum . Agric Biol Chem51:2671–2678
    [Google Scholar]
  27. Notley-McRobb L., Ferenci T.. 2000; Substrate specificity and signal transduction pathways in the glucose-specific enzyme II (EIIGlc) component of the Escherichia coli phosphotransferase system. J Bacteriol182:4437–4442
    [Google Scholar]
  28. Oh H., Park Y., Park C.. 1999; A mutated PtsG, the glucose transporter, allows uptake of d-ribose. J Biol Chem274:14006–14011
    [Google Scholar]
  29. Parche S., Burkowski A., Sprenger G. A., Weil B., Krämer R., Titgemeyer F.. 2001; Corynebacterium glutamicum : a dissection of the PTS. J Mol Microbiol Biotechnol3:423–428
    [Google Scholar]
  30. Plumbridge J.. 2000; A mutation which affects both the specificity of PtsG sugar transport and the regulation of ptsG expression by Mlc in Escherichia coli . Microbiology146:2655–2663
    [Google Scholar]
  31. Postma P. W., Lengeler J. W., Jacobson G. R.. 1993; Phosphoenolpyruvate : carbohydrate phosphotransferase systems of bacteria. Microbiol Rev57:543–594
    [Google Scholar]
  32. Quast K., Bathe B., Pühler A., Kalinowski J.. 1999; The Corynebacterium glutamicum insertion sequence ISCg2 prefers conserved target sequences located adjacent to genes involved in aspartate and glutamate metabolism. Mol Gen Genet262:568–578
    [Google Scholar]
  33. Robillard G. T., Broos J.. 1999; Structure/function studies on the bacterial carbohydrate transporters, enzymes II, of the phosphoenolpyruvate-dependent phosphotransferase system. Biochim Biophys Acta1422:73–104
    [Google Scholar]
  34. Ruijter G. J., van Meurs G., Verwey M. A., Postma P. W., van Dam K.. 1992; Analysis of mutations that uncouple transport from phosphorylation in enzyme IIGlc of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. J Bacteriol174:2843–2850
    [Google Scholar]
  35. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Saraceni-Richards C. A., Jacobson G. R.. 1997; A conserved glutamate residue, Glu-257, is important for substrate binding and transport by the Escherichia coli mannitol permease. J Bacteriol179:1135–1142
    [Google Scholar]
  37. Schaefler S.. 1967; Inducible system for the utilization of β -glucosides in Escherichia coli . I. Active transport and utilization of β -glucosides. J Bacteriol93:254–263
    [Google Scholar]
  38. Schnetz K., Toloczyki C., Rak B.. 1987; β -Glucoside ( bgl ) operon of Escherichia coli K12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes. J Bacteriol169:2579–2590
    [Google Scholar]
  39. Schnetz K., Sutrina S. L., Saier M. H. Jr, Rak B.. 1990; Identification of catalytic residues in the β -glucoside permease of Escherichia coli by site-specific mutagenesis and demonstration of interdomain cross-reactivity between the β -glucoside and glucose systems. J Biol Chem265:13464–13471
    [Google Scholar]
  40. Schnetz K., Stülke J., Gertz S., Krüger S., Krieg M., Hecker M., Rak B.. 1996; LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family. J Bacteriol178:1971–1979
    [Google Scholar]
  41. Stülke J., Arnaud M., Rapoport G., Martin-Verstraete I.. 1998; PRD – a protein domain involved in PTS-dependent induction and carbon catabolite repression of catabolic operons in bacteria. Mol Microbiol28:865–874
    [Google Scholar]
  42. Tobisch S., Glaser P., Krüger S., Hecker M.. 1997; Identification of a new β -glucoside utilization system in Bacillus subtilis . J Bacteriol179:496–506
    [Google Scholar]
  43. Vertès A. A., Inui M., Kobayashi M., Kurusu Y., Yukawa H.. 1993; Presence of mrr- and mcr- like restriction systems in coryneform bacteria. Res Microbiol144:181–185
    [Google Scholar]
  44. Zeppenfeld T., Larisch C., Lengeler J. W., Jahreis K.. 2000; Glucose transporter mutants of Escherichia coli K-12 with changes in substrate recognition of IICBGlc and induction behavior of the ptsG gene. J Bacteriol182:4443–4452
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26053-0
Loading
/content/journal/micro/10.1099/mic.0.26053-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error