Site-directed mutagenesis of an extradiol dioxygenase involved in tetralin biodegradation identifies residues important for activity or substrate specificity Free

Abstract

The sequence of the extradiol dioxygenase ThnC, involved in tetralin biodegradation, was aligned with other extradiol dioxygenases involved in biodegradation of polycyclic compounds, and a three-dimensional model of ThnC, based on the structure of the previously crystallized 2,3-dihydroxybiphenyl dioxygenase from LB400, was built. In order to assess the functional importance of some non-active-site residues whose relevance could not be established by structural information, a number of positions surrounding the substrate-binding site were mutated in ThnC. Ten mutant proteins were purified and their activity towards 1,2-dihydroxytetralin, 1,2-dihydroxynaphthalene and 2,3-dihydroxybiphenyl was characterized. N213H, Q198H, G206M, A282R and A282G mutants increased / at least twofold using 1,2-dihydroxytetralin as the substrate, thus showing that activity of ThnC is not maximized for this substrate. N213H and Q198H mutants increased / using any of the substrates tested, thus showing the relevance for activity of these two histidines, which are highly conserved in dihydroxybiphenyl dioxygenases, but not present in dihydroxynaphthalene dioxygenases. Different substitutions in position 282 had different effects on general activity or substrate specificity, thus showing the functional importance of the most C-terminal -sheet of the protein. A251M and G206M mutants showed increased activity specifically for a particular substrate. N213H, G206M, A282R, A282G and Y177I substitutions resulted in enzymes more tolerant to acidic pH, the most striking effect being observed in mutant Y177I, which showed maximal activity at pH 5·5. In addition, Q198D and V175D mutants, which had altered , also showed altered sensitivity to substrate inhibition, thus indicating that inhibition is exerted through the same binding site. This mutational analysis, therefore, identified conserved residues important for activity or substrate specificity, and also shed some light on the mechanism of substrate inhibition exhibited by extradiol dioxygenases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26034-0
2003-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/6/mic1491559.html?itemId=/content/journal/micro/10.1099/mic.0.26034-0&mimeType=html&fmt=ahah

References

  1. Adams R. H., Huang C.-M., Higson F. K., Brenner V., Focht D. D. 1992; Construction of a 3-chlorobiphenyl-utilizing recombinant from an intergeneric mating. Appl Environ Microbiol 58:647–654
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  3. Andújar E., Hernáez M. J., Kaschabek S. R., Reineke W., Santero E. 2000; Identification of an extradiol dioxygenase involved in tetralin biodegradation: gene sequence analysis and purification and characterization of the gene product. J Bacteriol 182:789–795
    [Google Scholar]
  4. Asturias J. A., Timmis K. N. 1993; Three different 2,3-Dihydroxybiphenyl-1,2-dioxygenase genes in the gram-positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6. J Bacteriol 175:4631–4640
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  6. Bugg T. D. H., Lin G. 2001; Solving the riddle of the intradiol and extradiol catechol dioxygenases: how do enzymes control hydroperoxide rearrangements?. Chem Commun 2001941–952
    [Google Scholar]
  7. Eltis L. D., Bolin J. T. 1996; Evolutionary relationships among extradiol dioxygenases. J Bacteriol 178:5930–5937
    [Google Scholar]
  8. Eltis L. D., Hofmann B., Hecht H. J., Lunsdorf H., Timmis K. N. 1993; Purification and crystallization of 2,3-dihydroxybiphenyl 1,2-dioxygenase. J Biol Chem 268:2727–2732
    [Google Scholar]
  9. Govantes F., Molina-López J. A., Santero E. 1996; Mechanism of coordinated synthesis of the antagonistic regulatory proteins NifL and NifA of Klebsiella pneumoniae . J Bacteriol 178:6817–6823
    [Google Scholar]
  10. Guex N., Peitsh M. C. 1997; SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723
    [Google Scholar]
  11. Han S., Eltis L. D., Timmis K. N., Muchmore S. W., Bolin J. T. 1995; Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science 270:976–980
    [Google Scholar]
  12. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  13. Happe B., Eltis L. D., Poth H., Hedderich R., Timmis K. N. 1993; Characterization of 2,2′,3-trihydroxybiphenyl dioxygenase, an extradiol dioxygenase from the dibenzofuran- and dibenzo- p -dioxin-degrading bacterium Sphingomonas sp. strain RW1. . J Bacteriol 175:7313–7320
    [Google Scholar]
  14. Harayama S., Rekik M. 1989; Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J Biol Chem 264:15328–15333
    [Google Scholar]
  15. Heiss G., Stolz A., Kuhm A. E., Müller C., Klein J., Altenbuchner J., Knackmuss H.-J. 1995; Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J Bacteriol 177:5865–5871
    [Google Scholar]
  16. Heiss G., Müller C., Altenbuchner J., Stolz A. 1997; Analysis of a new dimeric extradiol dioxygenase from a naphthalenesulfonate-degrading sphingomonad. Microbiology 143:1691–1699
    [Google Scholar]
  17. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. 1989; Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59
    [Google Scholar]
  18. Kim E., Zylstra G. 1995; Molecular and biochemical characterization of two meta -cleavage dioxygenases involved in biphenyl and m -xylene degradation by Beijerinckia sp. strain B1. J Bacteriol 177:3095–3103
    [Google Scholar]
  19. Kuhm A. E., Stolz A., Ngai K., Knackmuss H. J. 1991; Purification and characterization of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonic acids. J Bacteriol 173:3795–3802
    [Google Scholar]
  20. Kunkel T., Roberts J. D., Zakour R. A. 1987; Rapid and efficient site-directed mutagenesis without phenotypic selection. Methods Enzymol 154:367–382
    [Google Scholar]
  21. La Du B. N., Zannoni V. G., Laster L., Seegmiller J. E. 1958; The nature of the defect in tyrosine metabolism in alkaptonuria. J Biol Chem 230:251–260
    [Google Scholar]
  22. Que L., Ho R. Y. N. 1996; Dioxygen activation by enzymes with mononuclear non-heme iron active sites. Chem Rev 96:2607–2624
    [Google Scholar]
  23. Schwarcz R., Okuno E., White R. J., Bird E. D., Whetsell W. O. Jr 1988; 3-Hydroxyanthranilate oxygenase activity is increased in the brains of Huntington disease victims. Proc Natl Acad Sci U S A 85:4079–4081
    [Google Scholar]
  24. Senda T., Sugiyama K., Narita H., Yamamoto T., Kimbara T., Fukuda M., Sato M., Yano K., Mitsui Y. 1996; Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. J Mol Biol 255:735–752
    [Google Scholar]
  25. Senda T., Sugimoto K., Ishikazi T., Yamada T., Okano M., Masai E., Fukuda M., Mitsui Y. 1997; Structural studies on the “BphC” enzyme – a non-heme iron dioxygenase from a Pseudomonas sp. J Inorg Biochem 67:336
    [Google Scholar]
  26. Shu L., Chiou Y. M., Orville A. M., Miller M. A., Lipscomb J. D., Que L. Jr 1995; X-ray absorption spectroscopic studies of the Fe(II) active site of catechol 2,3-dioxygenase. Implications for the extradiol cleavage mechanism. Biochemistry 24:6649–6659
    [Google Scholar]
  27. Solomon E. I., Brunold T. C., Davis M. I. 7 other authors 2000; Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev 100:235–350
    [Google Scholar]
  28. Sugimoto K., Senda T., Aoshima H., Masai E., Fukuda M., Mitsui Y. 1999; Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Structure Fold Des 7:953–965
    [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. 1994; CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  30. Uragami Y., Senda T., Sugimoto K., Sato N., Nagarajan V., Masai E., Fukuda M., Mitsui Y. 2001; Crystal structure of substrate free and complex forms of reactivated BphC, an extradiol type ring-cleavage dioxygenase. J Inorg Biochem 83:269–279
    [Google Scholar]
  31. Vaillancourt F. H., Han S., Fortin P. D., Bolin J. T., Eltis L. D. 1998; Molecular basis for the stabilization and inhibition of 2,3-dihydroxybiphenyl 1,2-dioxygenase by t -butanol. J Biol Chem 273:34887–34895
    [Google Scholar]
  32. Vaillancourt F. H., Barbosa C. J., Spiro T. G., Bolin J. T., Blades M. W., Turner R. F., Eltis L. D. 2002; Definitive evidence for monoanionic binding of 2,3-dihydroxybiphenyl to 2,3-dihydroxybiphenyl 1,2-dioxygenase from UV resonance Raman spectroscopy, UV/Vis absorption spectroscopy, and crystallography. J Am Chem Soc 124:2485–2496
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26034-0
Loading
/content/journal/micro/10.1099/mic.0.26034-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed