1887

Abstract

Natural transformation is a mechanism for intra- and interspecific transfer of chromosomal DNA in . During this process a single strand derived from duplex DNA is transported into the cytoplasm and recombined with resident DNA. By electroporation, which introduces duplex DNA into cells, 100-fold lower transformation frequencies of JM300 were observed with shuttle vector or broad-host-range plasmid DNA when the plasmids had replicated in and not in JM300. Moreover, the natural transformation with cloned chromosomal JM300 DNA was reduced about 40-fold when the DNA had not been propagated in JM300 but in . Restriction was also active during natural transformation by single-stranded DNA. Restriction during natural transformation and electroporation was abolished in mutants isolated from mutagenized JM300 cells after applying a multiple plasmid electroporation strategy for the enrichment of restriction-defective strains. The mutants had retained the ability for DNA modification. The strain ATCC 17587 was found to have no restriction–modification system as seen in JM300. It is discussed whether restriction during natural transformation acts at presynaptic or postsynaptic stages of transforming DNA. Restriction as a barrier to transformation apparently contributes to sexual isolation and therefore may promote speciation in the highly diverse species .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26033-0
2003-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/4/mic149895.html?itemId=/content/journal/micro/10.1099/mic.0.26033-0&mimeType=html&fmt=ahah

References

  1. Arber W. 1991; Elements in microbial evolution. J Mol Evol 33:4–12
    [Google Scholar]
  2. Arber W. 2000; Genetic variation: molecular mechanisms and impact on microbial evolution. FEMS Microbiol Rev 24:1–7
    [Google Scholar]
  3. Bagdasarian M., Lurz R., Rückert B., Franklin F. C. H., Bagdasarian M. M., Frey J., Timmis K. N. 1981; Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas . Gene 16:237–247
    [Google Scholar]
  4. Bickle T. A., Krüger D. H. 1993; Biology of DNA restriction. Microbiol Rev 57:434–450
    [Google Scholar]
  5. Blakesley R. W., Wells R. D. 1975; ‘Single-stranded’ DNA from phiX174 and M13 is cleaved by certain restriction endonucleases. Nature 257:421–422
    [Google Scholar]
  6. Bron S., Luxen E., Venema G. 1980; Restriction and modification in B. subtilis . Mol Gen Genet 179:103–110
    [Google Scholar]
  7. Brunschwig E., Darzins A. 1992; A two-component T7 system for the overexpression of genes in Pseudomonas aeruginosa . Gene 111:35–41
    [Google Scholar]
  8. Canosi U., Iglesias A., Trautner T. A. 1981; Plasmid transformation in Bacillus subtili s: effects of insertion of Bacillus subtilis DNA into plasmid pC194. Mol Gen Genet 181:434–440
    [Google Scholar]
  9. Carlson C. A., Pierson L. S., Rosen J. J., Ingraham J. L. 1983; Pseudomonas stutzeri and related species undergo natural transformation. J Bacteriol 153:93–99
    [Google Scholar]
  10. Dubnau D. 1999; DNA uptake in bacteria. Annu Rev Microbiol 53:217–244
    [Google Scholar]
  11. Horiuchi K., Zinder N. D. 1975; Site-specific cleavage of single-stranded DNA by a Haemophilus restriction endonuclease. Proc Natl Acad Sci U S A 72:2555–2558
    [Google Scholar]
  12. Kobayashi I. 2001; Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756
    [Google Scholar]
  13. Kusano K., Sakagami K., Yokochi T., Naito T., Tokinaga Y., Ueda E., Kobayashi I. 1997; A new type of illegitimate recombination is dependent on restriction and homologous interaction. J Bacteriol 179:5380–5390
    [Google Scholar]
  14. Kuzminov A. 1999; Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ . Microbiol Mol Biol Rev 63:751–813
    [Google Scholar]
  15. Lacks S. A. 1999; DNA uptake by transformable bacteria. In Transport of Molecules Across Microbial Membranes (Society for General Microbiology Symposium no. 58) pp  138–168 Edited by Broome-Smith J. K., Baumberg S., Stirling C. J., Ward F. B. Cambridge: Cambidge University Press;
    [Google Scholar]
  16. Lacks S. A., Springhorn S. S. 1984; Transfer of recombinant plasmids containing the gene for Dpn II DNA methylase into strains of Streptococcus pneumoniae that produce Dpn I or Dpn II restriction endonucleases. J Bacteriol 158:905–909
    [Google Scholar]
  17. Lacks S. A., Ayalew S., de la Campa A. G., Greenberg B. 2000; Regulation of competence for genetic transformation in Streptococcus pneumoniae : expression of dpnA , a late competence gene encoding a DNA methyltransferase of the Dpn II restriction system. Mol Microbiol 35:1089–1098
    [Google Scholar]
  18. Levin B. R., Bergstrom C. T. 2000; Bacteria are different: observations, interpretations, speculations, and opinions about the mechanisms of adaptive evolution in prokaryotes. Proc Natl Acad Sci U S A 97:6981–6985
    [Google Scholar]
  19. Lorenz M. G., Sikorski J. 2000; The potential for intraspecific horizontal gene exchange by natural genetic transformation: sexual isolation among genomovars of Pseudomonas stutzeri . Microbiology 146:3081–3090
    [Google Scholar]
  20. Lorenz M. G., Wackernagel W. 1991; High frequency of natural genetic transformation of Pseudomonas stutzeri in soil extract supplemented with carbon/energy and phosphorus source. Appl Environ Microbiol 57:1246–1251
    [Google Scholar]
  21. Lorenz M. G., Wackernagel W. 1994; Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58:563–602
    [Google Scholar]
  22. Lorenz M. G., Meyer B., Wittstock M., Graupner S., Wackernagel W. 1998; Selective DNA uptake and DNA restriction as barriers to horizontal gene exchange by natural genetic transformation in Pseudomonas stutzeri JM300. In Horizontal Gene Transfer pp  131–143 Edited by Syvanen M., Kado C. London: Chapman & Hall;
    [Google Scholar]
  23. Majewski J. 2001; Sexual isolation in bacteria. FEMS Microbiol Lett 199:161–169
    [Google Scholar]
  24. McKane M., Milkman R. 1995; Transduction, restriction and recombination patterns in Escherichia coli . Genetics 139:35–43
    [Google Scholar]
  25. Meier P., Berndt C., Weger N., Wackernagel W. 2002; Natural transformation of Pseudomonas stutzeri by single-stranded DNA requires type IV pili, competence state and comA . FEMS Microbiol Lett 207:75–80
    [Google Scholar]
  26. Meselson M., Yuan R., Heywood J. 1972; Restriction and modification of DNA. Annu Rev Biochem 41:447–466
    [Google Scholar]
  27. Murray N. E. 2000; Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 64:412–434
    [Google Scholar]
  28. Nishigaki K., Kaneko Y., Wakuda H., Husimi Y., Tanaka T. 1985; Type II restriction endonucleases cleave single-stranded DNAs in general. Nucleic Acids Res 13:5747–5760
    [Google Scholar]
  29. Ochman H., Lawrence J. G., Groisman E. A. 2000; Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304
    [Google Scholar]
  30. Ostendorf T., Cherepanov P., de Vries J., Wackernagel W. 1999; Characterization of a dam mutant of Serratia marcescens and nucleotide sequence of the dam region. J Bacteriol 181:3880–3885
    [Google Scholar]
  31. Rayssiguier C., Thaler D. S., Radman M. 1989; The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342:396–401
    [Google Scholar]
  32. Redaschi N., Bickle T. A. others 1996; DNA restriction and modification systems. In Escherichia coli and Salmonella , 2nd edn. pp  773–781 Edited by Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  33. Roberts M. S., Cohan F. M. 1993; The effect of DNA sequence divergence on sexual isolation in Bacillus . Genetics 134:401–408
    [Google Scholar]
  34. Rocha E. P. C., Danchin A., Viari A. 2001; Evolutionary role of restriction/modification systems as revealed by comparative genome analysis. Genome Res 11:946–958
    [Google Scholar]
  35. Romanowski G., Lorenz M. G., Sayler G., Wackernagel W. 1992; Persistence of free plasmid DNA in soil monitored by various methods, including a transformation assay. Appl Environ Microbiol 58:3012–3019
    [Google Scholar]
  36. Rossello R. A., Garcia-Valdes E., Lalucat J., Ursing J. 1991; Genotypic and phenotypic diversity of Pseudomonas stutzeri . Syst Appl Microbiol 14:150–157
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Schweizer H. P. 1991; Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97:109–112
    [Google Scholar]
  39. Schweizer H. P. 1993; Small broad-host-range gentamicin resistance gene cassettes for site-specific insertion and deletion mutagenesis. BioTechniques 15:831–833
    [Google Scholar]
  40. Sikorski J., Graupner S., Lorenz M. G., Wackernagel W. 1998; Natural genetic transformation of Pseudomonas stutzeri in a nonsterile soil. Microbiology 144:569–576
    [Google Scholar]
  41. Sikorski J., Rossello-Mora R., Lorenz M. G. 1999; Analysis of genotypic diversity and relationships among Pseudomonas stutzeri strains by PCR-based genomic fingerprinting and multilocus enzyme electrophoresis. Syst Appl Microbiol 22:393–402
    [Google Scholar]
  42. Sikorski J., Möhle M., Wackernagel W. 2002a; Identification of complex composition, strong strain diversity and directional selection in local Pseudomonas stutzeri populations from marine sediment and soils. Environ Microbiol 4:465–476
    [Google Scholar]
  43. Sikorski J., Teschner N., Wackernagel W. 2002b; Highly different levels of natural transformation are associated with genomic subgroups within a local population of Pseudomonas stutzeri from soil. Appl Environ Microbiol 68:865–873
    [Google Scholar]
  44. Smith H. O., Gwinn M. L., Salzberg S. L. 1999; DNA uptake signal sequences in naturally transformable bacteria. Res Microbiol 150:603–616
    [Google Scholar]
  45. Stanier R. Y., Palleroni N. J., Doudoroff M. 1966; The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271
    [Google Scholar]
  46. Stuy J. H. 1976; Restriction enzymes do not play a significant role in Haemophilus homospecific or heterospecific transformation. J Bacteriol 128:212–220
    [Google Scholar]
  47. Watson A. A., Alm R. A., Mattick J. S. 1996; Construction of improved vectors for protein production in Pseudomonas aeruginosa . Gene 172:163–164
    [Google Scholar]
  48. Weichenhan D. 1991; Fast recovery of DNA from agarose gels by centrifugation through blotting paper. Trends Genet 7:109
    [Google Scholar]
  49. Wilson G. G., Murray N. E. 1991; Restriction and modification systems. Annu Rev Genet 25:585–627
    [Google Scholar]
  50. Zahrt T. C., Maloy S. 1997; Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi . Proc Natl Acad Sci U S A 94:9786–9791
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26033-0
Loading
/content/journal/micro/10.1099/mic.0.26033-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error