1887

Abstract

The reductive dechlorination (RD) of tetrachloroethene (PCE) to vinyl chloride (VC) and, to a lesser extent, to ethene (ETH) by an anaerobic microbial community has been investigated by studying the processes and kinetics of the main physiological components of the consortium. Molecular hydrogen, produced by methanol-utilizing acetogens, was the electron donor for the PCE RD to VC and ETH without forming any appreciable amount of other chlorinated intermediates and in the near absence of methanogenic activity. The microbial community structure of the consortium was investigated by preparing a 16S rDNA clone library and by fluorescence hybridization (FISH). The PCR primers used in the clone library allowed the harvest of 16S rDNA from both bacterial and archaeal members in the community. A total of 616 clones were screened by RFLP analysis of the clone inserts followed by the sequencing of RFLP group representatives and phylogenetic analysis. The clone library contained sequences mostly from hitherto undescribed bacteria. No sequences similar to those of the known RD bacteria like ‘’ or were found in the clone library, and none of these bacteria was present in the RD consortium according to FISH. Almost all clones fell into six previously described phyla of the bacterial domain, with the majority (56·6 %) being deep-branching members of the phylum. Other clones were in the phylum (18·5 %), the phylum (16·4 %), the phylum (6·3 %), the genus (1·1 %) and a lineage that could not be affiliated with existing phyla (1·1 %). No archaeal clones were found in the clone library. Owing to the phylogenetic novelty of the microbial community with regard to previously cultured micro-organisms, no specific microbial component(s) could be hypothetically affiliated with the RD phenotype. The predominance of in the microbial consortium, the main group revealed by clone library analysis, was confirmed by FISH using a purposely developed probe.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26018-0
2003-02-01
2020-09-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/2/mic149459.html?itemId=/content/journal/micro/10.1099/mic.0.26018-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F, Madden T. L, Schäffer A. A, Zhang J, Zhang Z, Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402
    [Google Scholar]
  2. Amann R. I. 1995; In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual ppMMEM-3.3.6/1–MMEM-3.3.6/15 Edited by Akkermans A. D. L., van Elsas J. D., de Bruijn F. J.. London: Kluwer;
    [Google Scholar]
  3. Amann R. I, Binder B. J, Olson R. J, Chisholm S. W, Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol56:1919–1925
    [Google Scholar]
  4. Amann R. I, Stromley J, Devereux R, Key R., Stahl D. A. 1992; Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol58:614–623
    [Google Scholar]
  5. Ballapragada B. S, Stensel D. H, Puhakka J. A., Ferguson J. F. 1997; Effect of hydrogen on reductive dechlorination of chlorinated ethenes. Environ Sci Technol31:1728–1734
    [Google Scholar]
  6. Beccari M, Majone M, Piemontese G, Tandoi V., Tomei M. C. 1998; Reductive dechlorination of tetrachloroethene by an anaerobic microbial consortium. Chim Ind80:63–72
    [Google Scholar]
  7. Berbenni P. 1994; La contaminazione delle acque sotterranee da parte di composti organici ed inorganici. Inquinamento5:50–59
    [Google Scholar]
  8. Burggraf S, Mayer T, Amann R, Schadhauser S, Woese C. R., Stetter K. O. 1994; Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes. Appl Environ Microbiol60:3112–3119
    [Google Scholar]
  9. Cord-Ruwisch R., Olivier B. 1986; Interspecies hydrogen transfer during methanol degradation by Sporomusa acidovorans and hydrogenophilic anaerobes. Arch Microbiol144:163–165
    [Google Scholar]
  10. Cord-Ruwisch R, Seitz H.-J., Conrad R. 1988; The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol149:350–357
    [Google Scholar]
  11. Daims H, Bruhl A, Amann R, Schleifer K. H., Wagner M. 1999; The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol22:434–444
    [Google Scholar]
  12. Dalevi D, Hugenholtz P., Blackall L. L. 2001; A systematic approach to resolving division-level phylogenetic relationships using 16S rDNA data. Int J Syst Evol Microbiol51:385–391
    [Google Scholar]
  13. de Bruin W. P, Kotterman M. J. J, Posthumus M. A, Schraa G., Zehnder A. J. B. 1992; Complete biological reductive transformation of tetrachloroethylene to ethane. Appl Environ Microbiol58:1996–2000
    [Google Scholar]
  14. DeWeerd K. A, Mandelco L, Tanner R. S, Woese C. R., Suflita J. M. 1990; Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium. Arch Microbiol154:23–30
    [Google Scholar]
  15. DiStefano T. D, Gossett J. M., Zinder S. H. 1992; Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture. Appl Environ Microbiol58:3622–3629
    [Google Scholar]
  16. Fathepure B. Z., Boyd S. A. 1988; Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Appl Environ Microbiol54:2976–2980
    [Google Scholar]
  17. Fathepure B. Z, Nengu J. P., Boyd S. A. 1987; Anaerobic bacteria that dechlorinate perchloroethene. Appl Environ Microbiol53:2671–2674
    [Google Scholar]
  18. Funari E, Bastone A, Bottoni P.. 7 other authors 1992; La contaminazione da organoclorurati alifatici dalle acque in Italia. Acqua Aria6:529–540
    [Google Scholar]
  19. Gerritse J, Renard V, Pedro Gomes T. M, Lawson P. A, Collins M. D., Gottschal J. C. 1996; Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol165:132–140
    [Google Scholar]
  20. Heijthuijsen J. H. F. G., Hanson T. A. 1986; Interspecies hydrogen transfer in co-cultures of methanol utilizing acidogens and sulfate reducing or methanogenic bacteria. FEMS Microbiol Ecol38:57–64
    [Google Scholar]
  21. Holliger C, Schraa G, Stams A. J. M., Zehnder A. J. B. 1993; A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol59:2991–2997
    [Google Scholar]
  22. Hugenholtz P, Goebel B. M., Pace N. R. 1998a; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol180:4765–4774
    [Google Scholar]
  23. Hugenholtz P, Pitulle C, Hershberger K. L., Pace N. R. 1998b; Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol180:366–376
    [Google Scholar]
  24. Hugenholtz P, Tyson G. W., Blackall L. L. 2001a; Design and evaluation of 16S rRNA-targeted oligonucleotide probes for fluorescence in situ hybridisation. In Gene Probes: Principles and Protocols pp29–42 Edited by Aquino de Muro M., Rapley R.. London: Humana;
    [Google Scholar]
  25. Hugenholtz P, Tyson G. W, Webb R. I, Wagner A. M., Blackall L. L. 2001b; Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl Environ Microbiol67:411–419
    [Google Scholar]
  26. Krumholz L. R. 1997; Desulfuromonas chloroethenica sp. nov. uses tetrachloroethene and trichloroethene as electron acceptors. Int J Syst Bacteriol47:1262–1263
    [Google Scholar]
  27. Krumholz L. R, Sharp R., Fishbain S. 1996; A freshwater anaerobe coupling acetate oxidation to tetrachloroethene dehalogenation. Appl Environ Microbiol62:4108–4113
    [Google Scholar]
  28. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175 Edited by Stackebrandt E., Goodfellow M.. Chichester: Academic Press;
    [Google Scholar]
  29. Löffler F. E, Sun Q, Li J., Tiedje J. M. 2000; 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species. Appl Environ Microbiol66:1369–1374
    [Google Scholar]
  30. Manz W, Amann R, Ludwig W, Wagner M., Schleifer K.-H. 1992; Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol15:593–600
    [Google Scholar]
  31. Maymó-Gatell X, Chien Y, Gossett J. M., Zinder S. H. 1997; Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science276:1568–1571
    [Google Scholar]
  32. Maymó-Gatell X, Tandoi V, Gossett J. M., Zinder S. H. 1995; Characterization of an H2-utilizing enrichment culture that reductively dechlorinates tetrachloroethene to vinyl chloride and ethene in the absence of methanogenesis and acetogenesis. Appl Environ Microbiol61:3928–3933
    [Google Scholar]
  33. Meier H, Amann R, Ludwig W., Schleifer K.-H. 1999; Specific oligonucleotide probes for in situ detection of a major group of Gram-positive bacteria with low DNA G+C content. Syst Appl Microbiol22:186–196
    [Google Scholar]
  34. Miller E, Wohlfarth G., Diekert G. 1997; Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch Microbiol168:513–519
    [Google Scholar]
  35. Mohn W. W., Tiedje J. M. 1992; Microbial reductive dehalogenation. Microbiol Rev56:482–507
    [Google Scholar]
  36. Pavlostathis S. G., Giraldogomez E. 1991; Kinetics of anaerobic treatment. Water Sci Technol24:35–59
    [Google Scholar]
  37. Roller C, Wagner M, Amann R, Ludwig W., Schleifer K.-H. 1994; In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNA-targeted oligonucleotides. Microbiology140:2849–2858
    [Google Scholar]
  38. Scholz-Muramatsu H, Neumann A, Meßmer M, Moore E., Diekert G. 1995; Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol163:48–56
    [Google Scholar]
  39. Sharma P. K., McCarty P. L. 1996; Isolation and characterization of a facultatively aerobic bacterium that reductively dehalogenates tetrachloroethene to cis -1,2-dichloroethene. Appl Environ Microbiol62:761–765
    [Google Scholar]
  40. Smatlak C. R, Gossett J. M., Zinder S. H. 1996; Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ Sci Technol30:2850–2858
    [Google Scholar]
  41. Stahl D. A., Amann R. 1991; Development and application of nucleic acid probes. In Nucleic Acid Techniques in Bacterial Systematics pp205–248 Edited by Stackebrandt E., Goodfellow M.. Chichester: Academic Press;
    [Google Scholar]
  42. Tandoi V, DiStefano T. D, Bowser P. A, Gosset J. M., Zinder S. H. 1994; Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high rate anaerobic enrichment culture. Environ Sci Technol28:973–979
    [Google Scholar]
  43. Terzenbach D. P., Blaut M. 1994; Transformation of tetrachloroethylene to trichloroethylene by homoacetogenic bacteria. FEMS Microbiol Lett123:213–218
    [Google Scholar]
  44. Wild A, Hermann R., Leisinger T. 1996; Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation7:507–511
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26018-0
Loading
/content/journal/micro/10.1099/mic.0.26018-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error